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Abstract
This paper explores the possibility of bringing IoT to
sports analytics, particularly to the game of Cricket. We
develop solutions to track a ball’s 3D trajectory and spin
with inexpensive sensors and radios embedded in the
ball. Unique challenges arise rendering existing localiza-
tion and motion tracking solutions inadequate. Our sys-
tem, iBall, mitigates these problems by fusing disparate
sources of partial information – wireless, inertial sensing,
and motion models – into a non-linear error minimization
framework. Measured against a mm-level ground truth,
the median ball location error is at 8cm while rotational
error remains below 12◦ even at the end of the flight. The
results do not rely on any calibration or training, hence
we expect the core techniques to extend to other sports
like baseball, with some domain-specific modifications.

1 Introduction
Sports analytics is a thriving industry in which motion
patterns of balls, racquets, and players are being ana-
lyzed for coaching, strategic insights, and predictions.
The data for such analytics are sourced from expensive
high-quality cameras installed in stadiums, processed at
powerful backend servers and clouds. We explore the
possibility of significantly lowering this cost barrier by
embedding cheap Inertial Measurement Unit (IMU) sen-
sors and ultrawide band (UWB) radios inside balls and
players’ shoes. If successful, real-time analytics should
be possible anytime, anywhere. Aspiring players in local
clubs could read out their own performance from their
smartphone screens; school coaches could offer quantifi-
able feedback to their students.

Our work follows a growing excitement in IoT based
sports analytics. Sensor-enabled football helmets, aimed
at detecting concussions and head injuries, are already
in the market. Nike is prototyping IMU-embedded
shoes [34, 47], while multiple startups are pursuing ideas
around camera-embedded jerseys [5], GPS-enabled soc-
cer balls [6], and bluetooth frisbees [1]. However, we
have not found a serious effort to accurately characterize
3D ball motion, such as trajectory, orientation, revolu-
tions per second, etc.

The rich literature in wireless localization and inertial

gesture recognition does not apply directly. WiFi-like
localization infrastructure is mostly missing in the play-
ground, and even if deployed, is not designed to support
cm-scale 3D location at ball speeds. Inertial sensors such
as accelerometers do not measure gravity when the ball
is in free fall, since these sensors detect only reactive
forces. Worse, gyroscopes saturate at around 6 revolu-
tions per second (rps) [8], while even an amateur player
can spin the ball at 12rps. In general, tracking a fast
moving/spinning object in an open playground presents
a relatively unexplored context, distinct from human-
centric localization and gesture tracking applications.

In approaching this problem top-down, we develop mul-
tiple wireless and sensing modules, and engineer them
into a unified solution. The technical core of our system
relies on using ultrawide band (UWB) radios to compute
the time of flight (ToF) and angle of arrival (AoA) of the
signals from the ball. When this proves inadequate, we
model the ball’s physical motion as additional constraints
to the underdetermined system of equations. Finally, we
fuse all these sources of information into a non-linear er-
ror minimization framework and extract out the parame-
ters of ball trajectory.

Spin estimation poses a different set of challenges. We
need to determine the initial orientation of the ball at its
release position and then track the 3D rotation through
the rest of the flight. With unhelpful accelerometers and
gyroscopes, we are left with magnetometers. While mag-
netometers do not capture all the dimensions of rotation,
we recognize that the uncertainty in the ball’s spin is
somewhat limited since air-drag is the only source of
torque. This manifests on the magnetometer as a sinu-
soidal signal, with a time varying bias (called “wobble”).
We formulate this as a curve-fitting problem, and jointly
resolve the ball’s angular velocity as well as “wobble”.
In general, we learn that magnetometers can serve as gy-
roscopes in free-spinning objects.

Our experiment platform is composed of an Intel Curie
board (IMU + UWB) embedded in the ball by a profes-
sional design company [3]. Two small UWB receiver
boxes, called anchors, are also placed on the ground –
additional anchors are infeasible due to the field layout



in the Cricket game, discussed shortly. For ground truth,
we use 8 Vicon based IR cameras positioned at 4 corners
of the ceiling. IR markers are pasted on the ball to enable
precise tracking (0.1mm and 0.2◦ for location and orien-
tation). Since the ViCon coverage area is 10x10x4m3 –
around half of the actual Cricket trajectories – we scale-
down the length of the throws while maintaining realistic
speed and spin.

Reported results from 100 different throws achieve me-
dian location accuracy of 8cm and orientation errors of
11.2◦, respectively. A player (wearing a clip-on UWB
board) is also tracked with a median error of 1.2m even
when he is at the periphery of the field (80m away from
the anchor). All results are produced at sub-second la-
tency, adequate for real time feedback to human players.

There is obviously room for continued research and im-
provement. First, we have sidestepped the energy ques-
tion. In future, perhaps wireless charging will mitigate
this problem; perhaps fast rotation will automatically
scavenge energy. For now, our solution allows a bat-
tery life of ≈ 75 minutes between re-charges, permitting
short training sessions. Second, our aerodynamic mo-
tion models are simplistic and did not get stress-tested
in indoor settings– this may have yielded favorable re-
sults. Moreover, we could not exceed throw speeds be-
yond 45 miles/hour and 12 revolutions/s, both of which
are around half of the professionals. Finally, this paper
focuses on Cricket, and although we believe our tech-
niques are generalizable with modest modifications, we
have not verified these claims. Our ongoing work is fo-
cussed on adapting iBall to baseball and frisbee.

To summarize, the contributions of this paper are:

• Formulating object tracking as an information fusion
problem under the practical constraints of Cricket. De-
signing an optimization framework for fusing time of
flight (ToF) measurements, air-drag motion models, and
noisy angle of arrival (AoA) estimates, to ultimately
achieve desired accuracy.

• Identifying various opportunities arising from free-fall
motion. Harnessing the magnetometer to jointly esti-
mate rotation and rotation axis, thereby emulating an
inertial gyroscope in free-fall scenarios.

The rest of the paper expands on these technical compo-
nents woven together by significant engineering effort.
We begin with some background on Cricket, followed by
challenges, opportunities, design, and implementation.

2 Background and Platform
2.1 Quick Primer on Cricket
We summarize the basic rules of cricket for those unfa-
miliar with the game. A Cricket match is divided into

two sessions – in any session, one team is called the bat-
ting side and the other is called the bowling or fielding
side. The teams switch roles in the second session. A
playing pitch is located at the center of the field, with two
wickets on each side of the pitch. A wicket is a set of 3
wooden sticks placed vertically one beside the other (see
Fig.1). A player from the batting side stands in front of
a wicket while a player from the bowling side runs up to
the other wicket and throws the ball towards the batsman.
All other players of the bowling side are called fielders
and stand scattered around the park.

The bowler’s objective is to hit the wicket with the ball,
or to force the batsman to hit the ball in a way that a
fielder can catch the ball before it drops to the ground. If
the bowler is successful, the batsman is out, i.e., he goes
off the field and the next batsman of the batting team
comes to face the bowler. The batsman’s goal, on the
other hand, is to not get out, and to also hit the ball so
that it goes past the fielders and reaches the periphery of
the park, called a boundary. If the ball bounces on the
ground at least once before it crosses the boundary, then
the batting side scores 4 more points (called runs); if the
ball goes over the boundary without any bounce, 6 runs
are added to the team’s score. A session ends when either
N deliveries have been bowled or all the 11 batsmen are
out, whichever occurs earlier. At the end , the team with
a higher total score wins.

Bowler
Batsman

Fielders

Wicket

Umpire

Ball

Wicket

Figure 1: Cricket in action. Two sets of wickets placed
at the bowler’s and batsman’s end.

Analogy to Baseball: The similarity between Cricket
and Baseball, from the perspective of ball and player
tracking, is noteworthy. The baseball travels and spins
at comparable speeds and rates, while the length of the
“pitch” is also similar. Differences might arise from the
stitching patterns on the ball, and the viability of placing
multiple anchors in baseball (in contrast to 2 in Cricket).
In this sense, perhaps the ball’s trajectory tracking prob-
lem becomes simpler in the case of baseball, but the spin-
ning question still remains relevant.



Figure 2: Ball instrumentation: (a) Intel Curie board with IMU sensors and UWB radio. (b) Scooped out cricket ball
for snug fit of the sensor box. (c) Closed ball with sensor box. (d) UWB 4-antenna MIMO radio serving as an anchor.

2.2 The Solution Space
There are obviously many approaches to ball and player
tracking – we briefly discuss our deliberations for select-
ing the IMU/UWB platform.

• High end camera networks used today are expensive
($100,000+) because they need to be far away [9],
hence, we considered placing cheaper cameras at the
wickets. The benefit is that the ball need not be instru-
mented. However, with no markers on the ball, spin
tracking and de-blurring is challenging even with the
best cameras. Cheap cameras at the wickets experience
similar problems, get occasionally occluded by players,
suffer in low light, and cannot track fielders scattered
in the field. Experiments with iPhone cameras yielded
poor results even with colored tapes on the ball.

• RFIDs on the ball (and readers placed at wickets) pose
a far less price point ($2000). However, the rapidly
spinning RFIDs exhibit continuous disconnections [44].
Further, cricket balls are continuously rubbed to main-
tain shine, crucial to the ball’s swing and spin – pasting
antennas on the surface is impractical.

• WiFi based tracking solutions are also impractical un-
der the constraints of high speed and spin, cm-scale ac-
curacy, and availability of a very few base stations on
the 2D ground (which makes 3D tracking difficult due
to dilution of precision (DoP) [26, 39]). Trials with laser
rangers [22] and acoustic reflection techniques [20] also
proved pointless. Given the small cross-sectional area
of the ball, the reflections from them yielded high false
positives.

• Our choice to embed electronics in the ball, although
cumbersome, proved practical for accuracy and cover-
age in the field. In discussion with 3D printing and de-
sign companies, we gained confidence that embedding
should be feasible even under impact. Finally, UWB ra-
dios offer time of flight capabilities, a pre-requisite for
extremely fast moving balls (> 80+ miles/hour). Our
overall cost is estimated at $250.

2.3 Instrumenting Balls and Anchors
Fig.2 illustrates the steps in ball instrumentation. A
Quark CPU, IMU BMM150 sensors, and a Decawave
UWB radio are cased in a plastic polymer box and snug-
fitted into a hole (to avoid rattling). The two halves of
the ball are closed shut and a hole drilled to bring out a
USB port to the surface for recharging. The sensor data
is stored on a local flash or can be streamed through the
UWB radio to the nearby “anchor”.

The anchor is a UWB receiver box placed at each wicket.
The UWB radio from Decawave [4] is 802.15.4 compli-
ant with support for 3.5 to 6.5 GHz bands (12 channels)
and a bandwidth of 500 MHz (data rates of up to 6.8
Mbps). The radio operates under low power, with sleep
current at 100 nanoAmp. While the ball contains a single
antenna (due to space restrictions), a 4 antenna MIMO
radio is fitted in the anchor (Fig.2(c)).

Fig.3 illustrates the overall deployment in real settings.
UWB signals are exchanged between the ball and an-
chors to compute the ball’s range as well as the angle
of arrival (AoA) from the phase differences at differ-
ent antennas. The range and AoA information are com-
bined for trajectory estimation. For spin analytics, the
sensors inside the ball send out the data for off-ball pro-
cessing. Players in the field can optionally wear the same
IMU/UWB device (as in the ball) for 2D localization and
tracking.

3 System Design: 3D Spin Tracking
Three main spin-related metrics are of interest to Crick-
eters: (1) revolutions per second, (2) rotation axis, and
(3) seam plane1. From a sensing perspective, all these 3
metrics can be derived if the ball’s 3D orientation can be
tracked over time. This motivates a discussion on orien-
tation, rotation, and coordinate frameworks.

1The seam is a stitch along the equator of the Cricket ball.
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Figure 3: Two anchors and a ball deployed on the ground,
while players optionally have the device in their shoes.

3.1 Foundations of Orientation
The orientation of an object is the representation of the
object’s local X, Y, Z axes as vectors in the global coor-
dinate frame. A rotation of an object is a change of ori-
entation, and can be decomposed into sequence of rota-
tions around its (local) X, Y, and Z axes. Put differently,
any new orientation can be achieved by rotating the ob-
ject (by appropriate amounts) on each of the 3 axes, one
after the other. The gyroscope measures each of these
rotations per unit time, called angular velocity. Thus,
theoretically, if one knows the initial orientation of an
object in the global coordinate frame, then subsequent
orientations can be tracked by integrating the gyroscope–
measured angular velocity across time.

Expressing the object’s initial orientation in the global
framework should be possible since gravity and magnetic
North are both along globally known directions. Thus,
the object’s local axes can be rotated until the local rep-
resentation of gravity and North align with the known
global directions. We consider an example below.

Fig.4(a) shows a global frame {Xg,Yg,Zg} with its Xg
pointing East, Yg pointing North, and Zg pointing up
against gravity. Fig.4(b) shows an object in an unknown
orientation. Now, the object can be rotated around X axis
until the measured gravity is along its own −Z direction;
it can be rotated again around this−Z axis until the mea-
sured magnetic field (compass) is along its own Y . Now
the local and global frameworks have fully aligned, and
we denote the total rotation as a single matrix R:[

X Y Z
]

R =
[
Xg Yg Zg

]
We define an object’s orientation, RO, as the inverse of
this rotation matrix, R−1. Intuitively, if an object needs a
clockwise rotation of 30◦ to align with the global frame-
work, then its orientation must be 30◦ counter-clockwise.
Thus, we have the capability to compute both initial
orientation and angular velocity; from these, any spin-
related analytics should ideally be trackable.

� Challenges with In-Flight Balls: Challenges emerge
in the real world and particularly in this cricket setting:
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Figure 4: Rotating local axes to align local directions of
gravity and magnetic North with the global directions.

(1) The gyroscope is noisy and this error accumulates
since rotation is a time–integral of angular velocity (2)
Worse, the gyroscope saturates beyond 5 revolutions/sec.
(rps), while even amateurs can spin the ball at 12rps
(professionals attain > 30). (3) Finally, gravity is not
measured in accelerometers during free-fall which pre-
cludes opportunities to rotate and align the local coordi-
nate frame 2. In sum, known techniques cannot compute
initial orientation or rotation when the ball is in flight.

3.2 The Core Opportunity
At a high level, 2 observations are central.

• In the absence of air-flow, there is no external torque on
the ball, implying that the ball’s rotation is restricted to
a single axis throughout the flight (i.e., the axis around
which it was rotated by the bowler).

• From the ball’s local reference frame, the magnetic
North vector spins around some axis. Given a single ro-
tation axis, the magnetometer can indeed infer the axis
and measure both magnitude and direction of rotation.

Of course, air-drag pollutes this opportunity since the
ball begins to experience additional rotations. This poses
the main challenge. An illustrative example follows.

3.3 An Illustrative Example
Let’s assume the ball’s mass is symmetrically distributed
and its center of mass is precisely at the center. Let’s also
consider gravity forces alone and no air drag. Now, due
to conservation of angular momentum, the ball will not
change its rotating state because no torque is generated
from gravity. The dimension of this rotational motion
is limited to 1 since the motion can be continuously ex-
pressed around a single axis, RG. Fig.5 illustrates the sit-
uation – each local X , Y , Z axis rotates in different cones

2A full analysis of IMU deficiencies is outside the scope of this
paper. Briefly, gyroscope saturation is rooted in imperfections accu-
mulated during the manufacturing process of MEMS sensors. These
imperfections make gyroscopes exhibit nonlinear responses to input vi-
brations [48, 40], and attempts to reduce imperfections increases cost or
lowers yield rate. Accelerometers on the other hand are fundamentally
designed to measure reactive forces, and hence, do not sense gravity
during free fall.



around the same RG. As an aside, the magnetic North is
also a fixed vector NG in the global framework (hence-
forth, we use superscript G/L to indicate that a vector is
being observed in the global/local framework).

X

Y

ZRotation Axis 𝑅𝐺

Seam Plane

Magnetic Vector 𝑁𝐺

Figure 5: In the global framework, the ball in rotating
around a constant rotation axis RG.

Shifting our perspective from the global to local coordi-
nate system, Fig.6(a) shows that the local X, Y, and Z
axes are now fixed, but the magnetic vector NL rotates in
a cone around a fixed local vector RL. Since magnetome-
ters can reliably measure a single dimension of rotation,
it should be possible to measure the parameters of this
cone. This is the core opportunity – the low-dimensional
mobility during free-fall empowers the magnetometer to
serve as a gyroscope.

X

Y

Z

Rotation Axis 𝑅𝐿

Seam Plane

Magnetic Vector 𝑁𝐿

Wobble

Figure 6: (a) In the local framework, the magnetic vector
NL is rotating around local rotation axis RL. (b) In the
local framework, local rotation axis RL is slowly moving

Unfortunately, with air-drag, the ball still continues to
rotate around the same global axis RG, but experiences
an additional rotation along a changing axis. To envision
this, consider the ball spinning around the global vertical
axis with the seam on the horizontal plane. With air-
drag, the ball can continue to spin around the identical
vertical axis, but the seam plane can gradually change to
lie on the vertical plane. This is called “wobble” and can
be modeled as a varying local rotation axis, RL. Fig.6(b)
shows the locus of RL as it moves in the local framework

(this was derived from ViCon ground truth). Thus, the
center of the NL cone is moving on the sphere surface,
even though the width of the cone remains unchanged.
This derails the ability to compute rotations from mag-
netometers.

3.4 Problem Formulation
Based on the earlier discussion, we know that if two non-
collinear vectors can be observed in the local framework,
and their representations known in the global frame, then
the orientation of the object can be resolved. We math-
ematically express the orientation of the ball at time t as
a rotation matrix, RO(t). This matrix is a function of the
globally fixed vectors (i.e., rotation axis and magnetic
North) and their locally measured counterparts.

RO(t)=
[
RG NG RG×NG

][
RL
(t) NL

(t) RL
(t)×NL

(t)

]−1

(1)
Here RG and NG are the rotation axis and magnetic North
vectors, respectively – both are in the global framework
and are constant during flight. The third column vec-
tor, (RG ×NG), is a cross product necessary to equal-
ize the matrix dimensions on both sides. NL

(t) is the
local magnetic vector measured by the magnetometer,[
mx my mz

]T . RL
(t) is the local rotation axis which is

slowly changing during the flight of the ball. From previ-
ous discussion we know that RL

(t) is always the centerline
of the instantaneous NL

(t) cone.

Our goal now is to estimate two of the unknowns,
namely RG and time varying RL

(t). We know that RG

remains constant hence resolving it at the beginning of
the flight will suffice – the same value can be used all
the way till the end. For RL

(t), we know that it is moving
on the sphere of the ball and the magnetic North is con-
stantly rotating around it. We focus on tracking RL

(t) first
and then address RG.

3.5 Tracking Local Rotation Axis RL
(t)

Since NL
(t) forms a cone around RL

(t), tracking RL
(t) is

equivalent to tracking the centerline of the cone. Now,
given that 3 non-coplanar unit vectors determine a cone,
a straightforward idea is to fit a cone using 3 consecutive
measurements: NL

(t−1), NL
(t) and NL

(t+1). Fig.7 shows the
result: the estimation follows the true RL

(t) trend, but is
considerably noisy.

These noise in RL
(t) estimation will translate to orienta-

tion error according to Equation 1. The noise cannot be
reduced by fitting the cone over larger number of magne-
tometer measurements – this is because the cone would
have moved considerably within a few sampling inter-
vals. Our observation is that, because the ball’s flight
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Figure 7: One example of RL
(t) estimation from cone fit-

ting

time is short (less than a second), we can effectively de-
scribe the (azimuth and elevation3) changes in RL

(t) as a
quadratic function of time t. Formally:

RL
(t) =

cos(θt)cos(ϕt)
cos(θt)sin(ϕt)

sin(θt)


Elevation θt = Ael t2 +Bel t +Cel

Azimuth ϕt = Aaz t2 +Baz t +Caz

Put differently, we model the motion of a moving cone,
under the constraints that the center of cone is moving
on quadratic path (on the surface of the sphere) and that
the cone angle θNR = ∠

(
NL
(t),R

L
(t)

)
is constant. We pick

the best 6 parameters of this model that minimize the
variance of the cone angles as measured over time. Our
objective function is:

argmin
6paras

Var
[
∠
(

RL
(T ),N

L
(T )

)
,∠
(

RL
(T+1),N

L
(T+1)

)
, · · ·
]
(2)

where T is the moment the ball is released. The initial
condition to this optimization function is derived from a
smoothened version of the basic cone fitting approach,
described in Fig.7.

3.6 Track Global Rotation Axis RG

Fig.8 shows 2 phases of ball tracking: pre-flight and in-
flight. The above section described phase 2, the tracking
of RL

(t) when the ball is spinning in-flight. However, re-
call that the global rotation axis, RG, also needs to be
estimated to solve for orientation RO(t) in Equation 1.
Tracking RG during the ball’s flight is difficult. Sensor
data during the flight only tells us where RL

(t) is pointing
(center of the NL

(t) cone) but it does not reveal any infor-
mation about RG. Fortunately, the rotation axis RG and

3Azimuth and elevation are latitudinal and longitudinal directions
on a sphere’s surface: a point on the sphere can be expressed as a tuple
of these 2 angles.

Pre-flight (Phase 1) In-flight (Phase 2)

Time T: Ball Released From Hand

Figure 8: Two phases of ball motion.

magnetic vector NG are two constant vectors. The an-
gle between these two vectors, ∠

(
NG,RG

)
is the same

as the local NL
(t) cone angle θNR. Thus, RG can only lie

on a cone around NG whose cone angle is θNR. Although
useful, it’s insufficient – we still do not know the point
on the cone’s circle corresponding to RG.

To mitigate this problem, we focus on sensor measure-
ments in phase 1 (pre-flight). Since this is not free-fall,
and the ball is not spinning fast, the gyroscope and ac-
celerometer are both useful. Our aim is to identify a sta-
tionary time point to compute the initial orientation of
the ball, and use the gyroscope thereafter to integrate ro-
tation until the point of release, T . Once we obtain orien-
tation at T , denoted RO(T ), we simply use the following
equation to solve for the global rotation axis RG

(T )

RG
(T ) = RO(T ) RL

(T ) (3)

Then, we use RG
(T ) as our estimation of RG for the whole

flight in Phase 2.

In general, gyroscope noise and saturation can render
RG
(T ) erroneous. However, since the ball does not spin

while in the hand (in fact, it rotates less than 1 revolu-
tion), and the angular velocity saturates the gyroscope
only at the last few moments before ball-release, we cal-
ibrate RG

(T ) using the cone angle restriction mentioned

above. Fig.9 reports consistently small RG
(T ) error from

50 experiments.
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Figure 9: Error in estimating global rotation axis RG
(T ) is

reasonably small across 50 experiments.

In conclusion, gyroscope dead-reckoning right before
ball release, combined with local rotation axis tracking



during flight, together yields the time-varying orienta-
tion of the ball. Algorithm 1 presents the pseudo code
for final overall solution.

Algorithm 1 Ball Orientation Tracking During Flight
1: Get coarse RL

(t) by combining 3 consecutive magne-
tometer measurements

2: Use them as the initial starting point to search for
parameters that minimize Var

[
NL
(t) cone angles

]
3: Compute cone angle θRN = Mean

[
NL
(t) cone angles

]
4: Use gyroscope to tracking ball’s orientation at the

release time, RO(T )
5: Get global rotation axis during flight:

RG = RO(T ) RL
(T )

6: Calibrate RG using θRN .
7: Use Equation 1 to compute ball’s orientation at any

time t during flight

4 System Design: 3D Trajectory Tracking
Location related analytics are also of interest in Cricket.
3 main metrics are: (1) distance to first bounce, called
length, (2) direction of ball motion, called line, and (3)
speed of the ball at the end of the flight. These met-
rics are all derivatives of the ball’s 3D trajectory. Our
approach to estimating 3D trajectory relies on formulat-
ing a parametric model of the trajectory, as a fusion of
the time of flight (ToF) of UWB signals, angle of arrival
(AoA), physics motion models, and DoP constraints (ex-
plained later). A gradient decent approach minimizes a
non-linear error function, resulting in an estimate of the
trajectory. We present technical details next.

4.1 Ranging with UWB
The Decawave UWB radios offer time resolution at
15.65ps. With modest engineering, we were able to com-
pute the ToF and translate it to range measurements (with
15cm error). Briefly, the ball sends a POLL, the anchor
sends back a RESPONSE, and the ball responds with
a FINAL packet. Using the two round trip times, and
the corresponding turn-around delays, the time of flight
is computed without requiring time synchronization be-
tween the devices (algorithm details in [21, 4]). Multi-
plied by the speed of light, this yields the ball’s range.
This is not our contribution since the Decawave platform
offers the foundational capabilities.

Observe that UWB ranging is available from only 2 an-
chors (placed at the two wickets) and therefore inade-
quate to resolve the 3D location of the ball. Additional
anchors cannot be placed on the ground since it will in-
terfere with the motion of the ball and fielders, while

placing anchors outside the field (90m away from the
wickets) significantly degrades SNR and ranging accu-
racy. Fig.10 shows the intersections of the 2 anchor mea-
surements, i.e., circles formed by the intersection of two
spheres centered at the anchors. At a given time, the ball
can lie on any point of a circle. Given that the initial
position and velocity of the ball is unknown, many 3D
trajectories can satisfy these constraints.

Figure 10: Intersections of ranging measurements leave
one location dimension unresolved.

4.2 Mobility Constraints
We bring two mobility constraints to resolve the uncer-
tainty: (1) physics of ball motion, and (2) opportunities
from the ball’s bouncing position.

(1) Physics of Ball Motion
Fig.11 shows a free-body diagram depicting the forces
acting on the Cricket ball while in flight. Besides grav-
ity, aerodynamic forces are acting on the ball. Briefly,
the ball surface is smooth on one side of the seam and
rough on the other (Cricket bowlers continue to polish
the smooth side during the game). This disparity causes
unbalanced air-flow, causing a side force. The speed of
the ball can cause a slight air drag force. The magnitude
and direction of the side forces depends on the seam ori-
entation, surface roughness, and ball velocity. The drag
and side force coefficients can be approximated as con-
stants [14]. The side force can produce up to 1m of lateral
deflection in trajectory.

Direction 
of motion

Gravitational Force

Laminar air flow

Turbulent air flow

Side Force(𝐹𝑠)

Drag Force(𝐹𝑑)

Figure 11: Unbalanced air-flow due to asymmetric
smoothness on the ball’s surface causes side force.

Under the above forces, ball motion follows a simple pro-
jectile path [14].

Fig.12(a) shows the extent to which the projectile model
(without the aerodynamic forces) fits the ball’s true tra-



jectory (derived from ViCon). The projectile was seeded
by the ViCon-computed initial location and initial veloc-
ity. The median error is 1cm across 25 different throws
of the ball, offering confidence on the usability of the
model in indoor environments. The efficacy outdoors re-
mains an open question.
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Figure 12: (a) Error between a parametric motion model
and ground truth (derived from ViCon cameras). (b) Re-
duced ranging error after fusing UWB ranging with pa-
rameterized motion models.

(2) Bouncing Constraint
When the ball bounces before reaching the batsman (de-
tectible from an accelerometer spike), the Z component
of location – the ball’s height – is 0. This resolves the
uncertainty at a single point, i.e., in combination with
UWB ranging, the ball’s location can be computed only
at this point. Thus, one point on the trajectory is “pinned
down”, shortlisting a smaller set of candidate trajecto-
ries. We can now fuse these physical constraints with the
underdetermined system from Fig.10.

On the other hand, there might be cases where the ball
does not bounce, resulting in slight degradation in accu-
racy. However, sensors are being embedded in bats as
well; thus, the bat’s location combined with the ball-bat
contact time could serve as a virtual bounce, reducing
uncertainties at a single point. This paper has not pur-
sued such opportunities and leaves them to future work.

4.3 Fusing Range and Motion Constraints
Our goal is to model the trajectory as an error minimiza-
tion problem. We denote the two anchor positions as
(xia,yia,zia) ∀ i ∈ {1,2}. Also, we denote the initial lo-
cation and initial velocity of the ball – at the point of
release from the hand – as (xo,yo,zo) and (vx,vy,vz), re-
spectively. Thus, at a given time t, the estimated location
of the ball from simple physics models (without aerody-
namics) is:

Sxe(t) = xo + vxt (4)
Sye(t) = yo + vyt (5)

Sze(t) = zo + vzt−0.5gt2 (6)

Here, g is the acceleration due to gravity. Using this, the

range from each anchor i is parameterized as:

Ri,p(t) =
√

(Sxe− xia)2 +(Sye(t)− yia)2 +(Sze(t)− zia)2

(7)

Once we have the range modeled, we design the error
function, Err, as a difference of the parameter-modeled
range and the measured range as follows.

argmin
6params

Err = ∑
i=1,2

∑
t
{Ri,p(t)−Ri,m(t)}2 (8)

This objective function is minimized using a gradient de-
scent algorithm, however, since it is highly non-convex,
multiple local maxima exist. We bound the search space
based on 2 boundary conditions: (1) The Z coordinate of
the bouncing location is zero. (2) The initial ball-release
location is assumed to be within a 60cm3 cube, as a func-
tion bowler’s height.

While this proved effective in eliminating many local
maxima, Fig.12(b) shows that the median ranging error
is 3cm. However, translating range to location is affected
by a phenomenon called dilution of precision (DoP) [26].

4.4 Dilution of Precision (DoP)
Ideally, the intersection of two UWB range measure-
ments (i.e., two spheres centered at the anchors) is a cir-
cle – the ball should be at some point on this circle. In
reality, ranging error causes the intersection of spheres
to become 3D “tubes”. Now, when the two spheres be-
come nearly tangential to each other, say when the ball
is near the middle of two anchors, the region of intersec-
tions becomes large. Fig.13(b) shows this effect. This is
called DoP and seriously affects the location estimate of
the ball (later we will see how DoP in Fig.13(c) affects
the localization of the players). DoP is a fundamental
problem that affects other trilateration applications like
GPS.

Localization Error

A1 A2 A1 A2 A1 A2

Figure 13: DoP introduced from ranging errors: (a)
Lower DoP when ranging circles not tangential, (b)
higher DoP when circles externally tangential, (c) max
DoP when circles internally tangential.

Fig.14 shows the error variation as the ball moves in
flight. The ball is released at time t = 0 and it reaches
the batsman by the end of the flight. – clearly, the error



increases and is maximal near the middle of the flight.
However, since the DoP can be modeled as a function of
distance from the anchors, it should be possible to weigh
the errors in the minimization function as follows:

argmin
6params

Err = ∑
i=1,2

∑
t
{(Ri,p(t)−Ri,m(t))×

1√
(DoP)

}2

(9)

This revised minimization function pays less importance
to range measurements weighted by a large DoP. Results
improve to a median of 16cm error.
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Figure 14: DoP aggravates error near the middle.

4.5 Exploiting Angle of Arrival (AoA)
The MIMO antennas at the anchors are capable of syn-
chronized phase measurements of the incoming signal.
Fig.15 shows how the phase difference φ is a function of
the difference in signal path (p1 and p2), which is in turn
related to AoA, θ . Thus, we have:

d cos(θ)
2π

λ
= φ (10)

cos(AoA) = cos(θ) =
φλ

2πd
(11)

Figure 15: AoA is derived from phase differences.

We employ a MIMO receiver only on the bowler side
(the other anchor cannot be utilized since it gets signifi-
cantly interfered by the batsman, corrupting phase mea-
surements). Now, for this single anchor, say the antennas
are separated along the x-axis; then the AoA can be ex-
pressed in terms of ball location, anchor locations, and

measured ranges:

cos(θ) =
Sx− xia

Ria
(12)

Sx,aoa = cos(θ)Ria + xia (13)

Thus, it is possible to refine the previous estimates of the
trajectory by including AoA in the error function. Fi-
nally, DoP problems arise with AoA too – as the ball
travels further away from the anchor, the location error
increases for a small ∆θ error in AoA. In fact, the error
is R∆θ , where R is the ball’s range.

4.6 Exploiting Antenna Separation
It is clear from Equation 11 that the AoA error is a
function of antenna separation d – higher antenna sep-
aration will decrease the error in measurement of cosθ

(AoA). However, with antenna separation higher than
wavelength λ , the phase wraps and introduces ambiguity
in AoA estimation – called integer ambiguity. For un-
ambiguous AoA measurements, d cosθ < λ

2 or d < λ

2 .
Fig.16(a) shows a common case of unambiguous AoA
measurement during a ball throw. Evidently, AoA is
heavily corrupted from spinning antenna orientation and
polarization.

To mitigate the noise, we increase the antenna separation
d. However, when d > λ

2 , the ambiguous AoA measure-
ments are indicated in the equation below.

d cos(θ) =
φλ

2π
+Nλ (14)

cos(θ) =
φλ

2πd
+N

λ

d
(15)

The AoA is not only a function of the phase difference
φ , but also a function of the unknown integer ambiguity
N. Fortunately, the smooth trajectory of the ball provides
an opportunity for tracking the integer ambiguity across
measurements, thereby any wrap around can be detected
and accounted for. Fig.16(b) shows a common case of
AoA measurement (known integer ambiguity) for a ball
throw after increasing the antenna separation to 18 cm –
2.5 times the wavelength. Evidently, the noise is much
lower, offering an additional opportunity.

4.7 Fusion of AoA with Ranging/Physics
In order to fuse, AoA, we need to firstly resolve the inte-
ger ambiguity. Our technique to resolve this is simple. At
any point during the gradient search algorithm, we obtain
an estimated AoA from current set of parameters. We
simply resolve the integer ambiguity by substituting the
currently estimated AoA in Equation 15. Incorrect am-
biguity resolution would automatically explode the error
function because of mismatch with range measurements.



(For example, if the integer ambiguity resolution is in-
correct even by a single integer, that would introduce a
median mismatch of 7.5cm (one wavelength) between
inferred and measured ranges). With integer ambiguity
resolution, we are ready to update the objective function
Err, with AoA fusion.

argmin
6params

Err = ∑
i=1,2

∑
t
{(Ri,p(t)−Ri,m(t))×

1√
(DoP)

}2

+∑
t
{
(Sx,p(t)−Sx,aoa(t))

Raoa,p∆θ
}2 (16)

where Sx,aoa(t) is drawn from Equation 12. The
Raoa,p∆θ (Raoa denotes range from AoA anchor, ∆θ

is AoA noise) factor decreases the weight for AoA
measurements taken far away from the AoA Anchor.

To summarize, iBall incorporates noisy ranging and AoA
measurements from UWB Anchors with physics based
motion model to track the ball trajectory. Results are pre-
sented in Section.6.
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Figure 16: Improved AoA with antenna separation.

5 System Design: Player Tracking
iBall aims to track the movement of players in the field.
Assuming clip-on UWB devices on the players, the ball
ranging techniques should apply directly; in fact, since
players are on the 2D ground, the tracking should be fea-
sible with 2-anchor ranging alone. However, a differ-
ent form of DoP emerges: when the two lines joining
the player and the two anchors tend to get collinear, the
ranging rings around the anchors begin to exhibit larger
overlapping areas (see Fig.13(c)). Fig.17 shows simu-
lations of DoP on a real-sized Cricket ground. As the
player moves closer to the X axis (i.e., higher collinear-
ity), the 90 percentile uncertainty of estimated location
increases to 15m, in contrast to 1m when the player is
perpendicular to the anchors. The effect is worse with
higher distance from anchors.

5.1 DoP Suppression through Filtering
To cope with DoP degradations, we apply Kalman Fil-
tering (KF) to player tracking. The basic idea is to detect
(from the accelerometer) that a player has started run-
ning, and combine the motion model of a human-run
with the UWB ranging estimates. For the human-run
model, we assume the velocity to be piecewise constant

Figure 17: Simulation of estimated player location.

in short time scales (second). The velocity is periodically
updated using the recent KF estimates, thereby account-
ing for changes in the human’s run patterns. Section 6
will show results from real experiments on a large field.
iBall applies the same techniques to the ball, which can
also be tracked after it has been hit by the batsman. We
evaluate the overall system next.

6 Evaluation
Our experiments were performed in a 10x10x4m3 indoor
space with 8 ViCon IR cameras installed on the ceiling
for ground truth (Fig.18(a)). Fig.18(b) shows IR markers
pasted on the ball – this enables location and orienta-
tion tracking accuracies of 0.1mm and 0.2◦, respectively.
The authors pretended to be Cricket players and threw
the ball at various speeds and spins (for a total of 100
throws). A batsman was realistically positioned to cre-
ate signal blockage between the ball and the anchor. The
Intel curie chip provides IMU data at 70Hz, while the
anchors perform ranging/AoA at 150Hz.

Metrics: At any given time t during the flight of the
ball, ViCon camera provides the true orientation of the
ball, say C(t), while iBall generates an estimated orien-
tation, say E(t). The Orientation Error (ORE) is essen-
tially the minimum rotation that must be applied to E(t)
to align with C(t). We measure this error across differ-
ent values of t and plot the CDF. We also plot the angle
difference between the rotation axis and the seam plane,
called Rotation Axis Error (AXE) and Seam Plane Er-
ror (PLE). Now, the true angular velocity of the ball, Cω

can be computed as C(t2)C(t1)−1

t2−t1
(note that difference in

orientation matrices is computed through inverse func-
tions). When multiplied by the time of the flight, the re-
sult is the total cumulative angle truly rotated by the ball.
We compute the same from E(t) and ultimately compute
the difference in the Cumulative Angle Error (CUE).
To understand the impact of higher spin, we also report
the orientation error (OE) for varying angular velocity.
For trajectory, the metrics are simpler, namely Location
Error (LOE) and Speed Error (SPE) reported against
various parameters.



Figure 18: (a) IR based ViCon cameras at the ceiling. (b)
A cricket ball instrumented with IR markers.

6.1 Performance of Spin Tracking
(1) Cumulative Angle Error (CUE): Fig.19 reports the
CUE for each of the 50 spin throws – the results are
sorted in ascending order of cumulative angles. A Y
axis value of 4000 implies that the ball has rotated 4000

360 ,
which is 11.1 cycles in air at the end of the flight. Ev-
idently, iBall performs close to the Vicon ground truth
for almost every throw. More importantly, unlike gyro-
scopes (which suffer from drift), the magnetometer does
not accumulate error over time (since it measures the ab-
solute North vector at every sample). This is a promising
result and a valuable primitive for various types of ball
analytics.

Error in estimated angular velocity (not shown) follows
the same trend as Fig.19(a), since it is simply the cumu-
lative rotation divided by flight time. Across 50 experi-
ments, we observe median angular velocity error of 1.0%
and a maximum error of 3.9%.

(2) Overall Orientation Error (ORE): Fig.19(b) re-
ports the CDF of ORE across all 50 throws – the median
is 11.2◦. We also break down this error into local rotation
axis error (AXE) and seam plane orientation error (PLE).
We are especially interested in these two because accu-
rately controlling rotation axis and seam plane is critical
in maintaining the stability of the ball in the air. Results
show a median AXE of < 5◦ and a median PLE of < 8◦,
while the 90th percentile remains < 20◦.

(3) Impact of High Spin: Fig.19(c) reports the impact
of higher spin on ORE. The accuracy slightly degrades as
the angular velocity increases. This is because, at higher
angular velocity, our estimation of global rotation axis
R̂G is less accurate, degrading ORE. However, since the
flight time is short, the accuracy degradation is marginal.

6.2 Performance of Trajectory Tracking
(1) Overall Location Error (LOE): Fig.20(a) quantifies
the location error (LOE) across 50 different throws – the
median error is 8cm. We also report the errors on each
of the directions: Y in the direction of the throw, Z being

vertically upwards, and X is perpendicular to Y and Z.
The median X, Y, and Z axes errors are 4.5cm, 3.4cm and
2.39cm respectively. The X axis errors are maximum due
to DoP effects, however, AoA lowers it to a reasonable
value.

(3) Does LOE Accumulate at the End of the Flight?
Fig.20(b) shows the median, 25th, and 75th percentile er-
ror for different positions of the ball during the flight.
Importantly, since we solve a global error minimization
problem, the error does not accumulate. Still, the initial
positions have higher accuracy compared to the end of
the flight because AoA computed from the bowler–side
anchor exhibits significantly less error. The degradation
is still modest, with a median end-flight LOE of 15cm.

(3) Speed Error (SPE) and Impact of Speed: iBall
computes velocity estimates – Fig.20(c) shows a median
speed error (SPE) of 0.4m/s. Upon discussions with do-
main experts, we gather that this level of accuracy is
valuable for coaching and analytics. Fig.21(a) decom-
poses the overall LOE results into different speed buck-
ets. Evidently, the accuracy does not degrade at higher
speed regimes (the maximum speed we could achieve in
our experiments was 22m/s). Of course, this is indoors
and wind effects are minimal, if any.

(4) Trajectory Extrapolation: The ball sometimes hits
the leg of the batsman. An important question in Cricket
is: would the ball hit the wicket if the batsman was not
in the way? This is called leg before wickets (LBW). For
LBW decisions, its valuable to be able to predict (or ex-
trapolate) the trajectory of the ball. The International
Cricket Association has declared 10cm as the minimum
tolerable LOE for LBW decisions. Fig.21(b) shows the
trajectory prediction error with iBall. While the 3D LOE
is 22cm, the x-axis error is smaller (9.9cm), indicating
the feasibility of using iBall for LBW decisions.

6.3 Performance of Player Tracking
Fig.21(c) shows LOE when the player is running at dif-
ferent parts of the playground – each line in the graph
corresponds to the angle made by the lines joining the
player and the two anchors. This also represents the LOE
of the ball after it has been hit. We experimented in a real
playground with a user running in a precise peripheral
circle of 89m radius. At low angles (i.e., running almost
collinear with the two anchors), the 90th percentile error
can be as large as 3.5m. Our Kalman Filter based ap-
proach reduces this LOE to 2.6m , while at higher angles,
the LOE is already less than 50cm.

7 Discussion and Future Work
(1) Scaling to greater speed and spin: Our maximum
throw speeds were limited by our own abilities. Perhaps
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Figure 19: (a) Cumulative angle error (CUE) across different experiments. (b) CDF of orientation error (ORE). (c)
Average orientation tracking error (ORE) under different spinning rate.
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a bowling machine would serve as a better experimenta-
tion platform. For spin, limitations arose from ViCon –
we observed increasing jitters and discontinuities in the
ViCon data for spins above 12rps. We are exploring al-
ternative ground-truth estimation techniques at such spin
regimes.

(2) Indoor experiments: We need experimentation un-
der outdoor aerodynamic effects – the reported results
may have been favorable in its absence. The lack of an
outdoor ground truth system has been the bottleneck so
far – we are exploring alternatives.

(3) Multipath: On the other hand, indoor environments
may have affected the AoA estimates as well. In an out-
door setting, wireless multipath is expected to be less
pronounced, potentially offering better reliability with
AoA estimation and fusion.

(4) Generalizing to other sports: We believe iBall’s
techniques can be extended to other sports with domain
specific modifications. For example, stitches on a base-
ball induce different aerodynamic effects, however, these
differences can be modeled and incorporated into iBall.
Such models are also available for golf and tennis balls,
allowing them to be suitably “plugged” into our frame-
work. Finally, iBall’s techniques may extend to hollow
balls like soccer and basketball. Adidas micoach [2] has
designed a soccer ball with multiple suspended sensors
within the ball. This can potentially offer more informa-
tion to iBall’s optimization engine.

(5) Smart ball weight distribution: Needless to say,
our ball prototype is not ready for real use – the embed-
ded sensor is not optimized to preserve the homogeneous
mass distribution inside the ball. This may have led to
some biases in the trajectory and spin results, although
we believe it is marginal. In the longer run, mechani-
cal engineering experts from D2M [3] have corroborated
that a near ideal weight distribution (with impact toler-
ance) is feasible. The opportunities arise from smaller
spatial footprint of the device, eliminating the battery (by
harvesting energy from the ball’s spin), and combining
the IMU and the radio in a single smaller chip. Vali-
dating our results on such a professionally manufactured
ball remains a part of future work.

(6) Enhancing accuracy: We believe there is room to
improve the location and spin tracking accuracy of iBall.
For example, it should be possible to jointly estimate the
location and rotation instead of treating them as sepa-
rate modules. The accelerometer can measure a combi-
nation of centripetal force (rotation) and linear accelera-
tion. Similarly, the UWB ranging measurements contain
a few bits of information about the orientation since the
radios cannot be precisely placed at the center of mass of
the ball. Such a coupling suggests that joint estimation of
can improve the accuracy of both. Hardware opportuni-
ties that leverage dual carrier UWB receivers can further
decrease errors in AoA, perhaps at a slight increase in
hardware complexity.

(6) Battery life and connectivity: The current ball pro-
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totype allows a battery life of ≈ 75− 90 minutes be-
tween recharges, permitting short training sessions. In
future, perhaps wireless charging will mitigate this prob-
lem; perhaps fast rotation will automatically scavenge
energy. Additional energy optimizations could be made
in the compute as well as the communication pipeline,
i.e., when the ball sends the sensor data to the anchor. As
one simple example, the anchors could perhaps beam-
form towards the ball to minimize the ball’s transmission
energy. Since the anchor is equipped with a large battery,
such asymmetric designs should be viable.

8 Related Work
Embedded IMU: Authors in [19, 17, 18, 32] embed
IMUs in a Cricket ball and is perhaps closest to our work.
However, these (brief) papers report basic features such
as angular velocity, time of flight, etc. These features
are directly available from the sensors and do not ad-
dress the actual metrics of interest to the players/coaches.
Authors in [16] also embed IMUs but focus mainly on
the design and packaging of the ball for high impact.
[24] explores spin-analytics in the context of a Bowling
ball, however, due to low spin-rates and contact with the
floor, accelerometers and gyroscopes are readily usable.
This simplifies the problem in contrast to Baseball and
Cricket.

Wearables, Cameras, and Sports Analytics: Several
startups like Zepp, MiCoach, and Ball are extracting mo-
tion patterns from wearables. Smart sensor shoes have
been proposed for analyzing soccer shots in [47], how-
ever, these are essentially classification problems. Hawk-
Eye [7] is perhaps the most popular and expensive cam-
era based tracker officially adopted in Cricket, Tennis,
etc. Hot Spot [10] is a popular IR technology used to de-
termine contact points between ball and players. Video
analytics efforts in [23, 37, 46] are processing video
feeds to learn/predict game strategies. While creative,
the projects are addressing a different set of problems.

Localization and Motion Tracking: Rich literature in
indoor localization [13, 45, 15, 43, 33, 42, 36, 41, 25] has
mostly focused on human motion. Under sparse WiFi
infrastructure and high ball speeds, such techniques are
inadequate. UWB based ToF ranging [31] report 10cm

accuracy for static objects. We build on this technique
but fuse with AoA, motion models, and DoP constraints,
to cope with real-world challenges. On a similar note, in-
ertial sensor based tracking have mostly been performed
on humans, robots and drones [29, 30, 48, 28, 27, 35].
However, unlike iBall, none of these works address the
space of freely falling objects. While work in [38] tracks
ballistic missiles, the granularity of tracking is different
both in time and space. iBall entails much finer granu-
larities of tracking and appropriately formulates a global
optimization problem for better accuracy unlike filtering
techniques in [38].

9 Conclusion
This paper develops techniques for tracking the 3D tra-
jectory and spin parameters of a cricket ball. The core
problem is rooted in motion tracking techniques, how-
ever, the sporting applications (and Cricket in this case)
presents unique challenges and opportunities. Through
fusion of wireless ranging, models of free-falling objects,
and angle of arrival estimates, we formulate and solve
error minimization problems. Results are promising and
we expect our techniques to generalize to other sports.
Our ongoing work is in pursuit of baseball and frisbee.
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tude and gyroscope’s bias estimation for a vtol uav. International
Journal of Systems Science 38, 3 (2007), 197–210.

[36] RAI, A., CHINTALAPUDI, K. K., PADMANABHAN, V. N., AND
SEN, R. Zee: zero-effort crowdsourcing for indoor localization.
In Proceedings of the 18th annual international conference on
Mobile computing and networking (2012), ACM, pp. 293–304.

[37] SEO, Y., CHOI, S., KIM, H., AND HONG, K.-S. Where are the
ball and players? soccer game analysis with color-based track-
ing and image mosaick. In International Conference on Image
Analysis and Processing (1997), Springer, pp. 196–203.

[38] SIOURIS, G. M., CHEN, G., AND WANG, J. Tracking an in-
coming ballistic missile using an extended interval kalman filter.
IEEE Transactions on Aerospace and Electronic Systems 33, 1
(1997), 232–240.

[39] SWANSON, E. Geometric dilution of precision. Navigation 25, 4
(1978), 425–429.

[40] TSAI, N.-C., AND SUE, C.-Y. Stability and resonance of micro-
machined gyroscope under nonlinearity effects. Nonlinear Dy-
namics 56, 4 (2009), 369–379.



[41] VASISHT, D., KUMAR, S., AND KATABI, D. Decimeter-level
localization with a single wifi access point. In 13th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI
16) (2016), pp. 165–178.

[42] WANG, H., SEN, S., ELGOHARY, A., FARID, M., YOUSSEF,
M., AND CHOUDHURY, R. R. No need to war-drive: unsuper-
vised indoor localization. In Proceedings of the 10th interna-
tional conference on Mobile systems, applications, and services
(2012), ACM, pp. 197–210.

[43] XIONG, J., AND JAMIESON, K. Arraytrack: a fine-grained in-
door location system. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 13) (2013), pp. 71–84.

[44] YANG, L., CHEN, Y., LI, X.-Y., XIAO, C., LI, M., AND LIU,
Y. Tagoram: Real-time tracking of mobile rfid tags to high pre-
cision using cots devices. In Proceedings of the 20th annual
international conference on Mobile computing and networking
(2014), ACM, pp. 237–248.

[45] YOUSSEF, M., AND AGRAWALA, A. The horus wlan location
determination system. In Proceedings of the 3rd international
conference on Mobile systems, applications, and services (2005),
ACM, pp. 205–218.

[46] YU, X., XU, C., LEONG, H. W., TIAN, Q., TANG, Q., AND
WAN, K. W. Trajectory-based ball detection and tracking with
applications to semantic analysis of broadcast soccer video. In
Proceedings of the eleventh ACM international conference on
Multimedia (2003), ACM, pp. 11–20.

[47] ZHOU, B., KOERGER, H., WIRTH, M., ZWICK, C., MARTIN-
DALE, C., CRUZ, H., ESKOFIER, B., AND LUKOWICZ, P. Smart
soccer shoe: monitoring foot-ball interaction with shoe integrated
textile pressure sensor matrix. In Proceedings of the 2016 ACM
International Symposium on Wearable Computers (2016), ACM,
pp. 64–71.

[48] ZHOU, P., LI, M., AND SHEN, G. Use it free: instantly knowing
your phone attitude. In Proceedings of the 20th annual interna-
tional conference on Mobile computing and networking (2014),
ACM, pp. 605–616.


