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ABSTRACT
This paper aims to use modern earphones as a platform for acoustic
augmented reality (AAR). We intend to play 3D audio-annotations
in the user’s ears as she moves and looks at AAR objects in the
environment. While companies like Bose and Microsoft are begin-
ning to release such capabilities, they are intended for outdoor
environments. Our system aims to explore the challenges indoors,
without requiring any infrastructure deployment. Our core idea
is two-fold. (1) We jointly use the inertial sensors (IMUs) in ear-
phones and smartphones to estimate a user’s indoor location and
gazing orientation. (2) We play 3D sounds in the earphones and
exploit the human’s responses to (re)calibrate errors in location and
orientation. We believe this fusion of IMU and acoustics is novel,
and could be an important step towards indoor AAR. Our system,
Ear-AR, is tested on 7 volunteers invited to an AAR exhibition – like
a museum – that we set up in our building’s lobby and lab. Across
60 different test sessions, the volunteers browsed different subsets
of 24 annotated objects as they walked around. Results show that
Ear-AR plays the correct audio-annotations with good accuracy.
The user-feedback is encouraging and points to further areas of
research and applications.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computer systems organization
→Embedded and cyber-physical systems; • Information sys-
tems → Multimedia information systems; Mobile informa-
tion processing systems.
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1 INTRODUCTION
Acoustic Augmented Reality (AAR) is the ability to overlay acous-
tic information on physical reality. Imagine a scenario as follows.
When visiting a museum, Alice’s earphone narrates the history of
paintings as she pauses to look at them. The paintings do not have
any form of beacons or codes attached; instead, the earphone tracks
Alice’s indoor location and gazing orientation, and using a known
map of museum exhibits, infers what Alice is looking at.

Later, when Alice asks her earphone to guide her to another gallery,
the earphone plays a 3D voice that says “follow me”. The voice
signal is carefully designed and played across the two earphones
so that it appears to come from the direction in which Alice should
walk. Alice simply follows the perceived direction of the voice and
reaches the gallery; she does not pull out her phone, nor checks
for maps or signposts in the museum. This interplay of (spatial)
movement with (spatial) sounds allows for such an AAR experience.
One could imagine other applications as well, such as playing AAR
games in a school building, finding people in a crowded place, or
even military scenarios where ground troops coordinate via 3D
acoustics. This paper uses the theme of a museum throughout the
paper for ease of explanation; the core technical problems generalize
across scenarios.

Companies like Bose and Microsoft are actively engaging in AAR
and beginning to roll out products [20, 55, 66]. Apple also an-
nounced spatial audio [9] in its latest release, the Airpods Pro [8].
However, the current services are in their early stages and intended
for simple applications where indoor localization is not needed.
Bose regards indoor AAR as a high priority research area [34], and
is pursuing infrastructure-based indoor AAR solutions [35]. This
paper considers an infrastructure-free approach, building only on
earphones and smartphones that are commonly carried by users.

From a research perspective, an AAR system requires 3 pieces
to come together, namely (1) tracking Alice’s indoor location, (2)
tracking Alice’s head orientation, and (3) designing 3D sounds
that appear to come from a desired direction. Figure 1 illustrates
an example. To navigate Alice to her requested gallery, the AAR
system uses Alice’s location and head orientation to infer that the
3D sound should arrive from an angle θ from her gazing direction.

https://doi.org/10.1145/3372224.3419213
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The “follow me” voice signal is then designed as a function of this
θ .

Figure 1: Example museum scenario for indoor AAR.

Of the 3 problems above, head orientation and 3D sound design
have largely been solved in literature [47, 64]. Bose has rolled out
products [21] that play annotations about landmarks, say the Eiffel
Tower, when a user turns her head towards it. Oculus and Dolby are
also using head orientation and 3D sounds to enable new immersive
experiences in virtual reality (VR).

On the other hand, the problem of indoor localization remains
elusive. While the topic has also been studied widely (including
IMU-based tracking [16, 19, 24, 26, 30, 37, 42, 67, 72]), it is still an
open research problem. An infrastructure free system which is eas-
ily deployable is especially difficult because IMU dead reckoning is
known to be inaccurate and there are few chances to calibrate. This
paper sees a new opportunity through earphones. The opportunity
has 2 parts:
1. The placement of the IMU near the ear presents a crucial ad-

vantage in tracking human location. This advantage was largely
missing when the IMU was on smartphones and wrist-worn de-
vices.

2. The human brain’s ability to sense the direction of sound (played
by the earphone) offers a new form of opportunity to correct IMU
estimation errors.

We expand on each of these ideas next.

(1) Observe that IMU-based localization is the problem of estimat-
ing the displacement of the body/torso while a user is walking. It
involves estimating 3 components: number of steps, step length,
and walking direction. With the current phone or watch IMU, none
of the problems are easy to solve reliably because these IMUs are
severely affected by activities of the limbs, such as motions of the
arm, legs, typing, talking, etc. The IMU senses the “sum” of all these
motions and accurately separating the body’s displacement from
the limb’s interferences has almost been impossible.

This paper finds that earphone IMUs, by virtue of being on the
upper extreme of the body, receive a surprisingly clean signal. This
signal is free from limb interference, and yet, preserves crucial fea-
tures of body motion. In some sense, the human skeleton/muscles
serve as a low pass filter for its own lower-body motion; only macro
motions – like the torso’s up/down bounce – propagate to the ear. This
clean upper-body signal, in collaboration with the smartphone’s
IMU, reveals geometric parameters of the human body skeleton,
ultimately translating to better localization. Ear-AR exploits these

geometric relationships between the motions of the leg and the
head and there is no reliance on training or user-data. Hence, the so-
lutions are expected to scale to different users and walking patterns.

(2) Unfortunately, any IMU based tracking is bound to diverge over
time [19] – a better design only slows down the divergence rate.
This is fundamental because IMU measurements are in a local refer-
ence frame, hence there is no way to correct the true trajectories. To
understand this through an analogy, consider a blind-folded person
trying to walk in a straight line. She has no way of telling whether,
and how much, she has drifted; hence, she can never correct for
it. Her only hope is to hear or touch something in the environ-
ment that reveals her drift in the global reference frame, offering an
opportunity to reset. Similarly, in this paper, Ear-AR utilizes the in-
terplay of directional sounds and true reality as a reset opportunity.
The idea is as follows.

Assume Ear-AR’s location estimate has drifted. Now, assume the
user is near an audio-annotated object and begins to hear a di-
rectional sound from the earphone. Due to the location drift, this
direction would be incorrect, i.e., if the user looks exactly in the
sound’s direction, the object would not be present in the line of
sight. However, if the drift is not large (or if the audio describes
the object) the user should still be able to correctly identify the
object and look at it. This offers the core opportunity for correction.
Ear-AR calculates the angular offset between the sound direction
and the user’s actual gazing direction, and uses this offset for reset-
ting the drift. Thus, encounters with annotated objects periodically
reset the IMU drifts, permitting a continued AAR.

In building Ear-AR, we use a wireless Beats headphone attached
with an external IMU (see Figure 2(a)), and a Samsung smartphone.
IMU data from both devices are streamed to a laptop, which first
estimates the user’s location and gazing direction, then synthesizes
the 3D directional sound, and finally transmits the sound to the
headphone when the user is looking at an annotated object. For
experiments, we pretend the indoor environment is a museum with
annotated objects on the walls/shelves (Figure 2(b)). We assume the
object locations <Xi ,Yi ,Zi> are known, so Ear-AR knows when a
user is in the vicinity of an object.

Annotated 
Objects

Figure 2: Ear-AR evaluation: (a) Beats wireless headphone
tapedwith awireless IMU. (b) Objects annotated in our lobby
send out directional sounds.

During tests, 7 volunteers were asked to wear our Ear-AR head-
phones, carry the smartphone in pocket, and stand at a known
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starting location. As they begin walking, they hear directional
voices that say “find me”. Following this voice, a volunteer’s task
is to mark a location on the wall or shelf that she believes is the
annotated object’s location (Figure 2(b)). She repeats this process
for 5 or 7 “find me” voices in one session. Volunteers perform 60
sessions in total.

We plot the error between the user-marked locations and actual
object locations (in addition to various other micro-benchmarks).
While exact results depend on configurations, the broad finding
is that: users can identify the correct object (and listen to the correct
audio annotation) with >90% accuracy when they opportunistically
reset their locations using spatial audio. Importantly, the IMU drift
is slower compared to state-of-the-art schemes and sound-based
calibrations are effective. Thus, all in all, the contributions in this
paper may be summarized as follows.
• We recognize that IMUs at the ear is an important vantage point
for measuring human motion, and utilize this opportunity (in
conjunction with the smartphone IMU) for indoor localization.
We utilize the earphone IMU for head orientation as well, a bonus.

• We leverage the human brain’s 3D sound tracking ability to cor-
rect/refine IMU’s motion tracking errors, enabling a sustainable
AAR experience.We build a functional proof of concept, evaluated
with real volunteers in a (pretend) museum setting.

The rest of the paper expands on each of these contributions, be-
ginning with foundations and measurements, followed by system
architecture, design, and evaluation.

2 BASICS OF IMU-BASED TRACKING
Consider the classical problem of IMU-based human localization
(also called pedestrian dead reckoning, PDR). Figure 3 shows the
accelerometer data from a smartphone when a user is walking. The
PDR problem is to accept such data as input and output a walking
trajectory of the user.
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Figure 3: Accelerometer data from smartphone IMU when a
user is walking.

Solving PDR translates to inferring 3 parameters from IMU data:
step-count n, step-length l , and walking-direction θ . Each of the n
steps can be modeled as a vector of magnitude li and direction θi .
Addingn step vectors produces the user’s location. Let us intuitively
discuss the difficulties in estimating these 3 parameters.

• Step counting (n) is the easiest of the 3 problems becausewalking
produces an up/down bounce on the body, which manifests in the

phone’s IMU1. Hence, today’s techniques essentially filter out a
smooth sinusoid from Figure 3 and count the number of peaks in
it [12, 44, 62, 65]. Some difficulties arise when users perform some
gestures with the phone (e.g., checking messages). These gestures
pollute the sinusoid causing errors in step-counting.

• Step length (l), defined as the forward displacement of the feet
for each walking step, is the hardest problem [50, 69, 72]. The major
challenge arises from not having a fixed reference frame. This is
because the phone’s local ⟨X ,Y ,Z ⟩ axes are constantly changing
due to the swing of the leg, hence the notion of forward is unclear.
Moreover, even if this is resolved, estimating displacement δ from
acceleration requires a double integration as follows:

δ = v0∆t +

∆t∬
0

A(t)dt = v0∆t +

∆t∬
0

(
a∗(t) + n(t)

)
dt

Here, v0 is the initial velocity at the start of a step, A(t) is the mea-
sured accelerometer signal, composed of the body’s acceleration
a∗(t) plus noise n(t) from limb gestures and IMU hardware. Observe
that (1) the double integration causes the noise pollution to grow
quadratically, severely affecting displacement. (2) Error incurred
in the first step gets carried over to the second step through an
incorrectvo . There is little hope to reset these (accumulating) errors
since there is no global/independent means of learning the truth.
Today’s state of the art approach is to train step length as a func-
tion of acceleration and step frequency [72]. However, given the
position of phone IMUs, even getting an accurate acceleration or
step frequency measurement is hard. Moreover, requiring per-user
training data is an additional burden.

• Walking direction is difficult as well because θ needs to be
expressed in a global reference frame (e.g., relative to North) [15,
23, 26, 67, 73]. But again, since IMU measurements are in its local
⟨X ,Y ,Z ⟩ reference frame, and since this reference frame keeps
rotating due to the leg’s swing, it is hard to continuously map the
motions to the global framework. Any error (due to noise) will
again accumulate, causing the estimated trajectory to diverge over
time. Even if we can track the phone’s orientation to some degree,
it is still difficult to translate this orientation to the user’s walking
direction. This is because human motions are complex aggregates
of swings, up/down bounces, sideward sways, and various jitters –
the walking direction is a 2D vector hidden in this complex mix of
signals. Extracting out this vector is challenging.

3 ENABLING OPPORTUNITIES
IMUs in the earphones, and the human brain’s ability to sense
directional sound, are 2 enabling opportunities. Let us discuss them
at an intuitive level (with some basic measurements).

[1] Naturally Filtered Signal at the Earphone IMU
Figure 4 plots the accelerometer signal from the earphone from
the same scenario as in Figure 3. The advantage is evident – the
earphone IMU captures a clean up/down bounce from the walking
motion and high frequency randomness from the lower body is
almost absent.
1For a smartwatch, the swing of the arm also produces such an up/down motion that
strongly correlates to each step.
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Figure 4: Accelerometer data from the earphone IMU during
walking and performing arm gestures.

Importantly, the advantage of this clean earphone signal goes be-
yond step counting. As detailed later, the upper-body mounting
location and the cleanliness of this earphone signal helps to com-
pute the vertical displacement of the head when the user is walking.
This vertical displacement is implicitly linked to the step length
of the user, hence, knowing one leads to the other. This is the key
enabler. In contrast, smartphone IMUs can count steps reasonably
well, but any kind of displacement measurement – a double integra-
tion of acceleration – is highly erroneous, since unlike head IMUs,
there are no chances to calibrate (as further detailed in section 5.1).

[2] 3D Sound Resolution in Humans
Human brains measure the time difference of arrival (TDoA) and am-
plitude difference across the two ears to estimate a sound’s source
location. We intend Ear-AR to leverage this capability by artificially
injecting delays and amplitude differences in the earphone sounds,
creating an illusion that the sound is coming from a specific direc-
tion. Such sounds are called “binaural” audio [57], referring to the
2 ears through which they must be played. Ear-AR wants to exploit
binaural sounds not only for directional voice annotations, but also
to correct localization error.

Figure 5(a) plots the angular resolution at which humans perceive
sound, while Figure 5(b) plots how synthesized sounds (played
through earphones) can approximate it. For Figure 5(a), we blind-
folded a volunteer in the middle of a room and played speech signals
on a speaker from different angles. We asked him to point a laser
pointer in the perceived direction of the speaker. Then we repeated
the same with synthesized binaural sound from the earphones.
The confusion matrices are comparable, implying that artificially
produced directional sounds are effective.

(a) Real Sound
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(b) Synthesized Sound
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Figure 5: Confusion matrix of human’s angular resolution
for (a) real sound, and (b) synthesized sound.

Building on these opportunities, we design the Ear-AR system. We
begin with a high level system architecture before describing the
technical details and implementation.

4 SYSTEM ARCHITECTURE
Figure 6 illustrates Ear-AR’s overall architecture, composed of 2
main modules. (1) Motion Tracking estimates gazing direction
from the head’s rotation, and the user’s location from the walk-
ing patterns. (2) IMU Acoustics Sensor Fusion combines the
human’s 3D binaural capabilities with motion tracking to bring
together a practical AAR system.

4.1 Motion Tracking
This module receives the IMU sensor data as input and outputs
a user location ⟨x,y, z⟩, and a gazing direction, θ . The input data
is 12 streams of IMU, i.e., 3-axis accelerometer and 3-axis gyro-
scope data from an earphone and a smartphone. We do not use the
magnetometer since it is easily polluted by ferromagnetic materi-
als in the environment, causing many past proposals to suffer from
unpredictable errors [11].

■ Gazing Direction refers to the direction in which the user is
looking. Since precise eye-tracking is difficult from earphones, we
assume the head’s direction approximates the gazing direction. Ear-
AR tracks the head orientation from the earphone’s gyroscope and
calculates a vector emanating outward from the center of the face. If
this vector extends and intersects with an annotated object, Ear-AR
assumes the user is looking at that object. In the interest of space,
we omit discussing the methods to infer gazing direction since these
are established techniques from literature [64, 73].

■User Location is derived from step count, walking direction, and
step length estimation modules. We leverage the earphone IMU for
step count and step length, while we develop a new technique for
walking direction. Through all these techniques, the IMUs from the
earphone and smartphone are carefully fused (since none of them
are individually adequate). The outcome is a continuous estimate
of user location and gazing direction.

4.2 IMU Acoustics Sensor Fusion
This module receives 4 inputs – the user location and gazing di-
rection from the motion tracking module, and the object locations
and annotations from an AAR database. The outputs are 3-fold:
(1) A binaural filter to create a directional version of any given
annotation. (2) Corrected user location after opportunistic IMU
recalibration. (3) Location and annotation of new objects that are
not in the AAR database.

■ Binaural Filtering modifies a given sound annotation to pro-
duce two different versions for the two ears. The modification (or
filtering) is a function of the relative direction (and distance) be-
tween the object and the user. The filter includes the attenuation
and reverberations due to the shapes of the ears and head. As the
user moves and turns, the binaural sounds are modified in real time,
so the user always hears the sound coming from an absolute source
location.
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Figure 6: Ear-AR is composed of 2 main modules: Motion Tracking and (Application-Specific) Refinements. Motion tracking
entails user localization and estimating gazing direction by fusing the earphone and smartphone IMU. Refinements pertain
to calibrating IMU drift through binaural sounds and AAR-specific opportunities.

■ Opportunistic Recalibration. This module measures the an-
gular offset between the expected gazing direction of the user (due
to the binaural sound) and her actual gazing direction (towards the
correct object). This offset reveals the inertial drift of the motion
tracking module, and via geometry, corrections are injected in the
location estimates. Performed periodically, this slows down the
IMU drift, making the system robust and practical.

■ Object Annotation. We assume that object locations and an-
notations are available from a database. However, we propose an
optional method for users to annotate objects on the fly. Ear-AR
uses 3D geometry to calculate the object’s relative location from
the user, and combined with the user’s own location and orienta-
tion, the object’s location is inferred (detailed in Sec. 5.2). With this
overview in place, let us now discuss Ear-AR design.

5 EAR-AR: SYSTEM DESIGN
We begin the section with algorithmic details on motion track-
ing, followed by sensor-fusion optimizations, and finally end with
engineering details on the overall system.

5.1 Part I: Motion Tracking
Figure 7 illustrates the dynamics of human walking. Time t = t1
is when the right foot just leaves the ground, and t = t3 is when
the right foot just lands back on the ground. During this single
step, the left foot is fixed, and the left leg undergoes an inverted
pendulum motion, i.e., rotation around the left foot hinged on the
ground. A phone in the pocket senses this rotational motion, like an
arc. Of course, the upper body (i.e., hip, torso, and head) also follow
this arc and these arcs repeat with each step. Note that each arc
decomposes into a horizontal forward motion and up-and-down
oscillation. The earphone senses both on its accelerometer.

■ Estimating Walking Direction
Our key intuition is that the smartphone measures the inverted

Earphone

Smart
phone

Rotation Axis 𝑽

𝑡1 𝑡2 𝑡3TimeWalk Direction Ԧ𝑑

Figure 7: Left leg moves like an inverted pendulum, hinged
around the left foot. Hence the head moves in an arc which
equals a horizontal plus up/down motion. The earphone
IMU senses these motions.

pendulum rotation through its gyroscope. The axis of this rotation
can be computed, and given that the walking direction is a 90◦
rotation of this axis on the horizontal plane, it should be possible
to derive it. Observe that past work on walking direction is limited.
Existing proposals either use PCA-like statistical approaches that
cannot estimate each individual step [15, 23, 26, 73], or rely on
the phone accelerometer which is polluted by noise and jitter [67].
Ear-AR’s method is robust and applies to each single step.

To realize our idea in Ear-AR, we first identify time instants t1 and
t3, i.e., the beginning and end of a step. This is straightforward from
the earphone IMU since each step – marked by a strike of the foot
on the floor – produces a clear acceleration peak.We then compute
the leg’s delta rotation, ∆R, between t1 and t3, by integrating the
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smartphone’s gyroscope measurement:

∆R =
t3∏

t=t1

∆Rgyrot (1)

where ∆R and ∆Rt are 3X3 rotation matrices. Finally, we convert
∆R into a rotation axis ®V and a rotation angle θ , a standard mathe-
matical operation:

⟨®V, θ⟩ = RotMat2AxisAngle(∆R) (2)

The rotation axis ®V, as shown in Figure 7, is exactly the user’s
left/right direction. Rotating it by 90◦ gives the user’s walking
direction, ®d .

When the phone is in hand, and the arm/hand performs random
gestures, motion tracking is harder. However, if the user carries
the phone in the pocket once, thereafter the earphone’s IMU is
enough. We will revisit this in Section 5.3 once we have discussed
step length estimation next.

■ Estimating Step Length
Obtaining step length (i.e., the foot displacement) is a much harder
problem. This requires double-integration of the accelerometer,
which suffers from heavy noise accumulation and lack of informa-
tion about the initial velocity (as discussed in the equation in Sec.2).
The key to solving this is to identify stationary instants at which the
velocity is zero, and calibrate double-integration methods at these
times. Previous researchers benefit from shoe IMUs [63] because
when the foot is on the ground, they obtain a good opportunity of
"zero-velocity". However, this is not the case for the movement of
phones or earphone IMUs – there is not a single static point during
human walking for these sensors. However, opportunities appear
if we examine the vertical and horizontal movements separately.

This is where the earphone brings unique opportunities. As shown in
Figure 8, when the user walks, the head moves horizontally forward
(hence no static instants), but vertically, it moves up-and-down
periodically. The head is at its highest position when two legs are
vertically straight (time t2 and t4); and at its lowest position when
both feet hit the ground (time t1, t3, t5). At either the highest or the
lowest position, the head’s vertical velocity is exactly 0, serving as
a “landmark” for periodic calibration.

Unfortunately, this calibration opportunity is available only in the
vertical dimension, whereas step length is the horizontal displace-
ment. But luckily, horizontal and vertical motion are strongly de-
pendent as they are both an outcome of the (inverted pendulum-like)
leg swing. From Figure 8, we can derive the following relationship
across these parameters: head’s vertical movement, δh; leg swing
angle, θ ; leg length, L; and step length, l :

l = L × sinθ × 2 (3)

δh = L − L cosθ (4)
Combining these two equations, we compute step length as:

l = 2 × δh ×
sinθ

1 − cosθ
(5)

In solving this equation, we already have obtained θ from Equation
(2). To obtain δh, we perform double integration on the earphone’s

𝜃

𝐿

𝑙

𝑡3𝑡2𝑡1

Time

Vertical 
Velocity

𝛿ℎ

𝑡4 𝑡5

𝛿ℎ

Figure 8: Right leg shown in dark blue, swings for angle θ ,
leading to half step length l/2, and head’s up-down motion
of δh. The earphone IMU’s vertical velocity is 0 when head
is at highest or lowest position.

vertical Z axis during each step:

δh =

∫ T

0
vz (t)dt ; vz (t) =

∫ t

0
az (t)dt (6)

To leverage the calibration opportunity, we force the starting verti-
cal velocity vz (0) and the ending vertical velocity vz (T ) to be both
0. Of course, integration error makes the end velocity not exactly 0
– we evenly distribute the offset back over time:

vcorrectedz (t) = vz (t) −
t

T
vz (T ) for 0 ≤ t ≤ T (7)

As a result, our vertical displacement, δh, is estimated much more
accurately. Now, inserting θ and δh into Equation (5), we have
obtained step length l . Together with walking direction ®d , we are
now able to track the user location as a vectorial addition over time:
Loc(t) =

∑
t |lt | ®dt .

5.2 Part II: IMU Acoustic Sensor Fusion
We introduce binaural filtering (not our contribution) followed by
how fusion between IMU and binaural acoustics can optimize user
localization.

■ Binaural Filtering
Figure 9 illustrates the core idea in human binaural hearing. The
ear closer to the sound source receives audible signals with relative
smaller delay and stronger intensity. Moreover, the sound under-
goes different echoes and attenuation due to the shapes of the ears
and head. Together, these effects are modeled as a function called
Head Related Transfer Function (HRTF) [27] – a standard technique
from literature. Ear-AR uses a global HRTF filter from a public med-
ical dataset [5] and generates the binaural sound as a function of
the object’s relative distance and angle from the human’s gazing
direction.

To preserve the sound’s absolute location during walking and turn-
ing, Ear-AR re-synthesizes the sound in small time windows (25ms).
The boundaries of the windows are smoothened using a low pass
filter. Eventually, Ear-AR is able to maintain 30Hz update rate for
binaural sound, even if the user keeps moving constantly.
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Figure 9: Sounds differ at two ears in (1) delay and (2) inten-
sity, permitting sound-source localization.

■ Opportunistic Recalibration
It is widely agreed that IMU based motion tracking is bound to
diverge over time[14, 19, 31, 38, 79]. Yet, IMUs are valuable since
they do not rely on any external service or infrastructure. Generally,
the way to harness such IMU-based techniques is by curbing the
divergence through (periodic) error recalibration. Ear-AR proposes
two forms of recalibration: (1) soft recalibration, which exploits the
users’ responses to binaural sounds, and (2) hard recalibration, per-
formed when the user stands on known landmarks on the ground.

Figure 10 illustrates the key idea in soft recalibration. Say the true
user location is right in front of the painting, but Ear-AR’s estimated
location is shifted to the left due to IMU drift. Thus, when Ear-AR
generates the binaural sounds in the earphone, it will suffer a ∆ϕ
angular error. The user will end up looking away from the object
(shown by the solid black arrow labeled “Binaural Direction”). How-
ever, assuming ∆ϕ is not large (i.e., the actual object is modestly
close to the incorrect binaural direction), we expect the user to still
recognize and look at the correct object. This is because annotated
audio normally has information about the object; so by listening to
the audio content alone, the user should be able to identify the ob-
ject2. Now, the difference between the user’s actual gazing direction
(known from the earphone IMU) and the binaural direction (derived
from the user’s estimated location and the known object location)
reveals the ∆ϕ. This provides the core recalibration opportunity. If
soft recalibration is performed periodically, say in an AAR gallery
or a museum, the location drift can be bounded.

Figure 10: Opportunistic recalibration when user identifies
object correctly and looks at it.

2For instance, the annotated audio can be“The Mona Lisa was painted by Leonardo
Da Vinci in 1517”.

The technical steps in soft recalibration is simple. Observe that
the true user location lies on a ray emitted from the object, in a
direction that is opposite to the user’s gazing direction (see Figure
11):

⟨xuser,yuser, zuser⟩ = ⟨xobj,yobj, zobj⟩ − α ⟨ ®Fx , ®Fy , ®Fz ⟩ (8)

where ®F is the true gazing direction. α is a coefficient representing
the length of the ray. Since the binaural direction and ∆ϕ are both
known, the true gazing direction ®F can be calculated, hence α is
the only unknown. Now, assuming the user’s height is known, α
can be derived as:

zuser = Huser = Hobj − α ®Fz (9)

Combining Equation (8) and (9), we can derive the exact user loca-
tion for recalibration.

𝐻𝑜𝑏𝑗𝐻𝑢𝑠𝑒𝑟

𝜃1

𝜃2

𝐷

(𝐴)

(𝐵)

Figure 11: For soft recalibration, the user looks at an object
(with known location) with elevation angle θ1. Ear-AR can
then correct user location.

Of course, applications where the user cannot identify the correct
object (e.g. navigation in a museum or airport where a 3D voice
escorts the user saying “follow me”), soft calibration is not feasible.
In such settings, it is necessary for hard recalibration landmarks to
be deployed in the environment. One example is to have arrow-head
stickers on the floor, so that users can periodically stand on these
landmarks, align their gazing direction with the arrow direction,
and actively ask the earphone to recalibrate. This will recalibrate
both user location and gazing direction.

■ Object Annotation
As an optional feature in Ear-AR, we want users to annotate objects
on the fly by gazing at it and recording a voice clip. Thus, Ear-AR
needs to estimate the object location from the knowledge of user’s
location and gazing direction. To this end, we propose a method
that requires very little user effort. The core idea is similar to Ear-
AR soft recalibration. As shown in Figure 11, the user will first look
at the object (point A), then looks at the projection of the object on
the ground (point B). Assuming the head elevations in these two
cases are θ1 and θ2, we have the following geometrical relationship:

tanθ1 =
Hobj − Huser

D
tanθ2 =

Huser
D

(10)

whereHuser andHobj are the heights of the user and the object, and
D is the horizontal offset between the object and the user. Since
θ1 and θ2 are the two elevation angles from gazing direction, and



MobiCom ’20, September 21–25, 2020, London, United Kingdom Zhijian Yang, Yu-Lin Wei, Sheng Shen, and Romit Roy Choudhury

Huser is the known user’s height, we can then compute Hobj and D,
respectively. Finally, the object location can be computed as:

⟨xobj,yobj, zobj⟩ = ⟨xuser,yuser, zuser⟩ + ⟨ ®Dx , ®Dy ,Hobj⟩ (11)

The computed object location, plus the user’s audio annotation, can
now be stored in the Ear-AR annotation database.

5.3 System-Level Questions
■ Correlated leg and head motion enables step length esti-
mation, but what if the phone is in the hand?
Arm and hand movements can be arbitrary, hence, motion tracking
is difficult with the phone in hand. However, if the phone has been
placed in the pocket once, Ear-AR estimates the leg-length L. Since
the length does not vary, the phone’s IMU is not needed anymore.
From Equation 4, θ can be estimated directly from L and δh (from
the earphone IMU). Thus, step length l = 2L sinθ . Finally, we will
estimate walking direction using PCA on the earphone IMU, which
is better than the smartphone IMU (polluted by the user’s hand
gestures).

■Will localization error slowly drift over time? How often
does the user need to calibrate
We are pushing the performance of IMU dead reckoning, however
any kind of dead reckoning will still drift eventually. How often
users need to calibrate is naturally a function of how fast their
location estimations drift. Evaluation results (Figure 20) will show
that Ear-AR’s localization error grows to ≈ 2.5m after 50m of walk-
ing, and ≈ 3.3m after 100m. This means, to identify objects that
are 2.5m apart, users can walk uncalibrated for 50m. In a normal
indoor Ear-AR setting, there are frequent calibration opportunities,
(e.g., a 3D audio in the airport saying “Free WiFi at Pete’s coffee”).
Users can use their own binaural sensing capabilities to calibrate.
In a long corridor-like environment, where there are not enough
audio annotated objects, we will need hard calibration points (e.g.,
floor stickers) or utilize some sensor landmark opportunities like
exploited in UnLoc[71].

■Will human’s ability to perceive binaural sound affect per-
formance?
Binaural audio offers hints about where the target object is located.
In reality, these audios should have the object description, making
users unlikely to identify the wrong object during calibration. In
the rare case where the user does calibrate using the wrong object,
the error correction would get delayed until she encounters the
next calibration opportunity. Finally, we used general head related
transfer functions (HRTF) instead of a personalized one to generate
binaural audios. Estimating the personal HRTF is part of our future
work and will of course reduce binaural perception errors.

■ Power consumption with Ear-AR
In the newest firmware update for Airpods Pro, Apple enabled head
tracking and spatial audio [8]. Compared with Apple’s technique,
the only extra energy consumption is computation energy caused
by indoor pedestrian dead reckoning. It is generally well-known
that IMU dead reckoning is not energy hungry [43]. In light of this,
we believe energy consumption would not be a hurdle for Ear-AR.

This concludes our system design section; next, we evaluate the
performance of Ear-AR.

6 EVALUATION
We begin with experiment design, followed by end-to-end system
performance and micro benchmarks.

6.1 Experiment Design
■ Setup: We evaluate Ear-AR in two settings shown in Figure 12
– a large 24m X 10.5m lobby of our engineering building and a
small 8m X 6m lab space. These spaces are deliberately chosen
to test different aspects of the system. Small settings require lots
of turns which challenges the step length and walking direction
components of Ear-AR. Large areas prompt longer walks, causing
errors to accumulate over time. We demonstrate robustness to both
settings.

Volunteers wear a Beats [2] Bluetooth headphone taped with a
wireless 100Hz IMU (Figure 2(a)). They also carry a phone that
records IMU data; all data is wirelessly streamed to a laptop. The
laptop runs MATLAB which computes user location and generates
a 48kHz binaural audio. This audio is re-synthesized at a rate of
30Hz as the user moves around.

■Methodology: An experiment session begins with a volunteer
wearing the headphone+IMU, carrying the smartphone in the pant
pocket, and standing at a known starting location. 15 objects are
annotated in the lobby, and 9 in the lab (Figure 12) including plants
and books on the shelves, a CCTV camera, a refrigerator, a clock,
a wall painting, etc. As the volunteer begins walking, she hears a
binaural voice that says “find me”. She follows the direction of the
voice and her task is to identify the source object. If her location
estimation or gazing direction drifts too much, the binaural sounds
become misleading, and she ends up choosing a wrong object from
the surroundings.

We measure “object identification error (OIE)” defined as the error
between the true object location and the user-identified object loca-
tion. Once done, the user walks around until a new “find me” voice
plays in her headphones and she must now find the location of this
new object. Importantly, none of our audio annotations describe the
object, hence users must find the objects solely based on IMU + bin-
aural acoustics. Of course, soft calibration is still feasible since every
time a user identifies the object (correct or wrong), a recalibration
is performed. Thus, our results are a conservative estimate; in real
settings, descriptive annotations are likely to improve recalibration
leading to better overall results.

6.2 Results: End-to-End Performance
■ Object Identification: Figure 13 plots the CDF of object identifi-
cation error (OIE) inmeters. The large lobby experiment is composed
of 36 sessions/trajectories and the small lab composed of 24. Ses-
sions are defined as a random sequence of 5 to 7 objects that must
be identified. Each session is around 8 minutes long and does not
include any hard recalibration. Our main results are as follows.
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Figure 12: (a) A large lobby of our engineering building; (b) a 3D model of the lobby showing a map of annotated objects set
up on the walls and shelves, as well as example walking paths of volunteers; (c) a 3D model of a small lab space in which we
also perform AAR experiments.

(1) For large settings, and with no recalibration, 63% of the objects
were identified correctly (hence OIE=0m). The remaining 37% er-
rors resulted in a median OIE=3.9m, suggesting that errors mostly
happened with nearby objects. When soft calibration was applied,
the correct cases increased to >90% and the median OIE for the
wrong cases reduces to 2.0m.

(2) For small settings, objects were correctly identified in >71%
cases, while the remaining 29% cases produced a median OIE of
3.2m. Soft recalibration was deliberately turned off since annotated
objects were very densely packed in the lab. Without descriptive
annotations, the risks with recalibration are greater than the bene-
fits. In general, Ear-AR avoids recalibration when annotations are
generic and adjacent objects are within 2m apart, which is the case
here. In the real world, such situations should be infrequent.
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 Object Identification Error (m)
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0.5

1
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D

F

 Large Soft Calibration
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 Small No Calibration

Figure 13: CDF of object identification error (OIE) for (1)
large setting with soft calibration, (2) large setting w/o cal-
ibration, and (3) small setting w/o calibration.

In sum, the overall performance is promising, particularly given
that the above is a conservative evaluation. Real world annotations
are expected to be descriptive, implying far greater accuracy with
soft recalibration, in turn leading to improved OIE and localization.

Figure 14 zooms into the results from 6 randomly picked sessions,
first without recalibration, and then with soft recalibration. Each
row represents one session/trajectory. For example, consider the
first row in Figure 14(a). The user hears binaural sounds from objects
⟨A, D, E, G, J, K, N⟩, although not necessarily in that sequence. In this
example, the user correctly identifies the 5 objects, indicated by the

check marks. However, for object A, she incorrectly identifies it as
object O, which is 5.2 meters away. Similarly, K gets incorrectly
classified to L, 1.5m away. Figure 14(b) shows the same results
but with soft recalibration. Every time the user looks at an object,
Ear-AR is able to correct user location error. As a result, the error
margin is constantly low, leading to fewer incorrect identifications.

6.3 Results: Micro Benchmarks
■Walking Direction: Figure 15 plots the estimated walking direc-
tion over time, for two different pre-defined trajectories: a rectangle,
and a triangle. We choose the widely-used PCA technique [26] as
our baseline. PCA works by first projecting the accelerometer mea-
surements into global reference frame, and then identifying the
direction of maximum variance as the walking direction. Figure
15 shows that our method follows the ground truth more closely,
essentially because we leverage the physics model to achieve per-
step granularity. On the other hand, PCA needs at least a few steps
for statistical convergence.

Figure 16 shows the CDF of walking direction errors for 4 users.
For this, users walk naturally along a longer and curved path for 2
minutes (without any calibration in between). Errors are smaller
for two of the users who exhibit less sideward sway than the others.
Overall, the median error is less than 8◦ for all users, implying
reasonable robustness in our walking direction algorithm.

■ Step Length: We compare our step length estimation with a
baseline algorithm called Weinberg method [72], which essentially
assumes that step length can be estimated with an upper-body IMU
using the following formula:

L = K × (amax − amin )
1
4 (12)

where K is a constant that is trained per user, and amax (amin ) is
the maximum (minimum) acceleration within a step. For Weinberg
method, we ask each user to walk 30 meters to train her K value.

Figure 17 shows the comparison of step length estimation accuracy,
between the baseline Weinberg method and Ear-AR (without any
training). For comparison, we also plot the results of Ear-AR after
training a scaling factor (similar to the Weinberg method). Users
are asked to walk at an even speed. We classify steps into three
categories: small (< 0.6m), medium (0.6m - 0.8m), and large (>
0.8m). Ground truth is computed by dividing distance over the total
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Figure 14: Visualization of the results from 6 example trajectories, (a) w/o and (b) with recalibration opportunities. Each row
is one trajectory. A box with a tick represents correct object identification; a box with label and number means this object is
incorrectly identified as a different object with this error; a box with no border means it doesn’t belong to this trajectory.
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Figure 15: Walking direction over the number of steps for
two different trajectories: (a) rectangle, (b) triangle. Compar-
ison shown with past techniques using PCA.
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Figure 16: CDF of walking direction errors, across four dif-
ferent users.

number of steps. For small and large steps, even without training,
Ear-AR performs better than the baseline algorithm by > 4X . For
medium steps, Ear-AR performs worse than baseline, but better if
training is also allowed for Ear-AR. On average, Ear-AR achieves
9.0% step length error without training, and 5.4% error with simple
training.
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Figure 17: Avg. step length error for varying step size
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Figure 18: Step length estimation error across different users,
for a medium (natural) step size.

Figure 18 further decouples the blue bar in Figure 17 (Ear-AR with-
out training, medium steps) into a CDF graph across different users.
Overall, the variation of Ear-AR’s step length median errors is
within 8.1% − 17.4% across users.

■ IMU-based Tracking (called Dead Reckoning):
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With walking direction and step length in place, we now evaluate
the net dead reckoning error. Figure 19 shows the quantitative re-
sults by plotting the dead reckoning errors (in meters) over varying
walking distances. We plot the results for 4 different methods: (1)
Ear-AR, with no recalibration; (2) Ear-AR, with soft recalibration;
(3) Ear-AR, with hard recalibration; and (4) baseline, which is PCA
walking direction + fixed (averaged) step length. Even after a user
has walked for 150 meters inside the lobby, the average worst case
error (averaged across all test sessions) is 7.9m with no calibration,
7.1m with hard recalibration, and 5.25m with soft calibration. This
is encouraging, especially when combined with opportunistic (soft
and hard) recalibration.

Figure 19: Localization error over variants of Ear-AR, plus a
comparison with conventional dead reckoning.
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Figure 20: DeadReckoning ErrorwithDifferent Soft Calibra-
tion Point Density

■ Soft Calibration Frequency: Figure 20 shows the effect of soft
calibration on dead reckoning error. We plot the error over a dis-
tance of 180m of random walking inside our building for (1) no soft
calibration, (2) one soft calibration in the middle, (3) two evenly
distributed soft calibrations (60 meters apart) and (4) three evenly
distributed calibration points (45 meters apart). Ear-AR’s average
worst case error is 7.9mwith no calibration, and 5.1mwith 3 calibra-
tions. The average error is obviously less: 4.4m with no calibration,
and 3.2m, 2.8m and 2.2m with 1, 2 and 3 soft calibrations, respec-
tively. Evidently, Ear-AR’s localization is reasonably robust even
without frequent calibrations. With one calibration every 90m, Ear-
AR should be able to perform well.

■ Dead Reckoning Stress Test: Figure 21 shows the dead reckon-
ing performance of Ear-AR under challenging environments where
normal dead reckoning will falter. These environments include
changing walking speed, some side steps, and constant head move-
ment. Our results shows that Ear-AR’s dead reckoning error is still
less than 12% during a 200m walk. If we have calibration opportu-
nity every 50m, the average error is still below 7.0m. This error is
mainly due to step length error – changing walking speed creates
additional challenge in estimating step length accurately. However,
as shown in Figure 17, Ear-AR is already much better than current
heuristics because Ear-AR builds on concrete geometric relation-
ships between leg movement and step length. Finally, random head
rotation will hardly affect Ear-AR because once the step length is
estimated (and the phone is in the pocket), we need not rely on the
ear IMU anymore for dead reckoning.
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Figure 21: Dead Reckoning Under Stress Test

■ Object Annotation: We evaluate Ear-AR’s ability to localize
objects on the wall (by gazing at it and its vertical projection on the
floor). Figure 22 shows the median annotation error with increasing
distance between the user and the wall (as depicted in Figure 11).
The error bars represent standard deviation. As expected, larger
user-to-wall distance causes larger annotation errors, essentially
because small angular error (in gazing direction) translates to large
annotation displacement on the walls. On average, the annotation
error is 15cm per 1 meter of distance.
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Figure 22: Errors in annotating objects on the wall, when
users stand at different distances from the wall.
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■ Gazing Direction: Finally, Figure 23 shows the performance of
gazing direction tracking, when the user walks along a circular
trajectory for three times, so that her head orientation slowly ro-
tates from 0◦ to 1080◦. We plot two types of errors: (1) gyroscope
integration drift; and (2) gazing direction error, which is the combi-
nation of gyroscope drift and the untracked eyeball movement. On
average, the gazing direction error is less than 8◦, even after three
full rounds of rotation.

Figure 23: Angular error in gyroscope integration and gazing
direction, as the amount of head rotation increases.

7 LIMITATIONS AND DISCUSSIONS
We discuss a few limitations with our current system.

■ Crowdsourcing Object Annotation: This paper assumes that
object locations are known from an offline database. Ideally, object
annotations should be produced seamlessly, e.g., people visiting a
new object, looking at it, and recording the annotation. We have
designed and evaluated such object localization separately (Fig. 22)
but have not used it in the system since soft recalibration would get
affected. One improvement is to utilize the average of the crowd’s
estimates to refine the object’s location. This raises questions about
system convergence, hence opens to future research.

■ Floor Semantics: Ear-AR needs the rough floor plan (mainly
wall locations) to know if an annotated object is in the user’s line
of sight. Otherwise, an object may be in another room and Ear-AR
would believe the user is gazing at it. Our evaluation did not require
such floorplans since all objects were in a single lobby or lab. In a
building-wide deployment like airports, libraries, malls, such floor
semantics are necessary.

■ HCI Factors in Ear-AR: A real-world deployment would need
to regulate how, when, and which annotations are played, to mini-
mize disturbance or information overload. Such policies need to be
designed with considerations of human factors, a topic unaddressed
in this paper.

■ Using Earphones Alone for Ear-AR: Future earphones are
being envisioned as stand-alone devices that do not rely on the
smart phone. From the perspective of Ear-AR, we believe this is
viable, however, this means the walk estimation technique would no
longer have the leg rotation information. Reliably inferring walking
direction from earphone IMUs alone is a critical but challenging
problem. This remains an open question for follow-up research.

8 RELATEDWORK
Earables andAcoustic AR: Bose AR [20, 21] andMicrosoft Sound-
scape [55, 66] are the closest to our work. Both offer AAR to users
via earphones (including binaural sounds) but are entirely for out-
door use (via GPS). Ear-AR can be viewed as an enabler of indoor
experiences for Bose and Microsoft’s applications. Additional ear-
worn devices are on the rise from both industry [13, 28] and aca-
demic projects [25, 59], however, none offer the location context
necessary for AR. Ear-AR’s indoor localization technique, coupled
tightly with binaural acoustics, is well suited for AR applications.

Motion Tracking and Localization: Motion tracking and local-
ization are classical research questions in the mobile and wireless
community [10, 18, 30, 39–41, 45, 49, 51–54, 58, 61, 68, 70, 75–78, 80].
Past work on IMU based tracking have proposed various creative
ideas [24, 37, 42, 67, 71, 74], but none of them solve the entire dead
reckoning problem. This is essentially because phone orwatch IMUs
are not in a “good position” to accurately estimate human walks,
even with advancements in algorithm design. IMU-embedded ear-
phones [3, 4, 6] are bringing new opportunities as leveraged by
Ear-AR. Recent researches have looked at specific aspects of the
problem, such as counting steps [4, 6, 62], measuring head rotation
[32, 73], detecting walking stages [33], or fusion with other sensors
[16]. In fact, STEAR [62] takes advantage of cleaner IMU signal on
the ears but only for step counting. In contrast, Ear-AR fully utilizes
the unique opportunities from earphone IMUs to fill in the missing
pieces in pedestrian dead reckoning.

Binaural Acoustics: The fact that human brain is capable of re-
solving the direction of the incoming sound is well known [57].
Past works have utilized the binaural effect for different purposes,
including sound recording and reproduction [1, 22, 29], entertain-
ment [7, 17, 46, 48], and localization [36, 56, 60].We instead leverage
binaural sounds to recalibrate IMU-based motion tracking errors, a
novel usage of the brain’s binaural capability.

9 CONCLUSION
The popularity of sensor-embedded earphones is ushering new op-
portunities. This paper demonstrates how earphone IMUs capture
“naturally filtered” signals related to the human walk, improving
over state-of-the-art solutions in pedestrian dead reckoning (PDR)
and localization. The IMUs also capture head movements, which
when combined with the human ability to sense 3D sounds, en-
ables new kinds of applications. This paper demonstrates one such
application in acoustic augmented reality (AAR), pointing to a fu-
ture where voice assistants like Siri would be context-aware, both
in terms of the user’s interest and the surrounding environment.
Ear-AR is an early step in this direction.
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