Listen Before You Talk, But on the Frequency Domain
Souvik Sen (Duke), Romit Roy Choudhury (Duke), Srihari Nelakuditi (University of South Carolina)

802.11 Channel Access Today
- Backoff arbitrates channel contention
 - AP waits for a random backoff before transmission
 - Low utilization because channel must remain idle
 - Collisions due to same backoff also reduce utilization

Redesigning 802.11 Channel Contention
- Backoff is fundamentally not a time domain operation
- Can we implement backoff in frequency domain?
 - Opportunity: 48 OFDM subcarriers can be used for choosing random backoff

T2F: Time-to-Frequency
- Replace temporal backoff with subcarrier transmission
- During contention:
 - AP chooses a random subcarrier to transmit
 - Concurrently listens to find other active subcarriers
 - Active subcarriers imply contending APs’ backoff

Scheduled Transmission
- Active subcarriers imply backoff chosen by other APs
 - Each AP knows its rank in the sequence
 - Enables back to back TDMA like transmission

Multiple Collision Domain Coexistence
- Insert PIFS delay between sequential transmissions

Frequency Domain Backoff has lower overhead than Time Domain Backoff

Reducing Collisions using Second Round
- In dense networks, multiple winners of T2F backoff
- Winners of the first round repeat T2F backoff
- Few APs in the second round means fewer collisions

Backoff is fundamentally not a time domain operation
- Can we implement backoff in frequency domain?
 - Opportunity: 48 OFDM subcarriers can be used for choosing random backoff

Testbed Implementation and Evaluation
- 8 node USRP/GNURadio testbed
- Subcarrier detection accuracy of ~95%
- Low collision probability with two rounds
- Upto 70% throughput gain over 802.11
 - Due to reduced overhead and fewer collisions

Ongoing Work
- Improve subcarrier detection accuracy
- Experiment with multiple collision domains
- Online implementation in progress