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ABSTRACT

This paper considers the problem of estimating K angle of
arrivals (AoA) using an array of M > K microphones. We
assume the source signal is human voice, hence unknown to
the receiver. Moreover, the signal components that arrive
over K spatial paths are strongly correlated since they are
delayed copies of the same source signal. Past works have
successfully extracted the AoA of the direct path, or have as-
sumed specific types of signals/channels to derive the subse-
quent (multipath) AoAs. Our method builds on the core ob-
servation that signals from multiple AoAs embed predictable
delay-structures in them, which can be factorized through it-
erative alignment and cancellation. Simulation results show
median AoA errors of < 4◦ for the first 3 AoAs. Real-world
measurements, from a circular microphone array similar to
Amazon Echo, show modest degradations. We believe the
ability to infer even K = 3 AoAs can be helpful to various
sensing and localization applications.

Index Terms— Angle-of-arrival, blind channel inference,
cancellation, multipath, acoustics, localization.

1. INTRODUCTION
Angle of arrival (AoA) refers to the angle θ over which a
signal arrives at a receiver. In reality, a transmitted signal
bounces off multiple surfaces and arrives at the receiver over
multiple AoA angles {θ1, θ2, ...}. This paper aims to infer the
first K AoA angles, θ1:K . Such capabilities can be helpful to
various applications. For instance, a smart speaker like Ama-
zon Echo may be able to infer the location of a user by reverse
triangulating the AoAs of the voice [1, 2]. Self-driving cars
may be able to infer the acoustic sounds from other cars and
infer their presence even when they are not visible around the
corners [3]. Multiple AoAs may also serve as priors to source
separation algorithms [4, 5, 6], aiding in better initial condi-
tions for convergence.

While a rich body of past work have explored this problem
space [7, 8, 9, 10, 11], most have either focussed on optimiz-
ing the direct path AoA θ1, or have assumed properties such
as impulse-like signals [12, 13], multiple uncorrelated sources
[8], co-prime channels [14, 9], etc. This paper is an attempt to
estimate θ1:K in uncontrolled conditions, such as real-world
multipath channels and unknown acoustic source signals. Our

proposed technique may even extend to RF signals, discussed
at the end of Section 3.

The key challenge in estimating θ1:K emerges from the strong
correlated-ness of the arriving signal components. This cor-
related behavior is an outcome of both the auto-correlation
of the source signal (especially human voices), compounded
by the multipath channel which essentially delays and attenu-
ates each signal component. The net received signal is thus a
mixture of delays. Since relative delays (across microphones)
are central to AoA estimation, the mixture poses a non-trivial
challenge. Observe that if the source signal is known [15], or
even if the source signal exhibits low auto-correlation (e.g.,
white noise) [16], the problem gets simplified. With human
voice signals, these are clearly not the case.

Our proposed algorithm, called iterative AoA (IAoA), lever-
ages the delay structure embedded in the signal, caused by the
AoAs and microphone array geometry. As a starting point,
IAoA estimates the relative delays of the direct path, a rel-
atively simple problem, and infers the first AoA, θ1. Now,
these relative delays allow us to align the signals and subtract
them, such that only the subsequent multipath components re-
main as residues. By further aligning such residues from dif-
ferent pairs of microphones, we define an objective function,
which gets minimized at the optimal AoA, θ2. Continuing
this iteration, i.e., re-aligning and canceling subsequent sig-
nal paths, gives us θ3, and so on. In fact, when more micro-
phones are available, the AoAs may also be jointly inferred
(albeit at a larger computation cost). Section 3 will present
the algorithm in greater detail.

We evaluate IAoA through simulation and real-world experi-
ments. The real experiments are performed in a student apart-
ment using a 6-microphone array from SEEED [17], mounted
on top of a Raspberry Pi. We placed the device at different lo-
cations and gave voice commands, such as “Hey Siri”. The
measurement data were used to parameterize the simulations,
which in turn sheds light on a wide parameter space. Simula-
tion results show that 75th percentile AoA error is < 4◦ for
θ2, and < 30◦ for θ3. The accuracy degradation is small at
lower SNRs. The performance in real environments degrades
slightly, however, remains useful for various practical appli-
cations. We believe additional ideas can be developed atop
IAoA to further reduce the multi-AoA errors.
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2. PROBLEM FORMULATION
We consider an acoustic receiver with M microphones, de-
noted mi, i ∈ [1,M ]. We denote the unknown source signal
as x, the signal recorded by each microphone as yi, and the
corresponding acoustic channel as hi. IAoA ’s goal is to ac-
cept all yi as input, and output a list of angles θj , j ∈ [1,K],
where θj is the AoA of the jth multipath, and K is the maxi-
mum number of AoAs we intend to detect.

Assumptions: We allow the following assumptions:
• There is only one sound source x in the environment.
• The sound source is static for the duration of the signal.
• The receiver has at least M = 4 microphones.

Drawing on Blind Channel Identification:
As mentioned earlier, AoAs manifest as relative delays across
microphones. If the acoustic channel at each microphone is
known, then these relative delays are easy to calculate. This
reminds us of blind channel identification (BCI), a rich body
of work [18, 14, 19, 20] aimed at estimating channels hi when
the source signal x is unknown. The core idea in BCI is to
find the channels that align and cancel the received signals,
i.e., find hi, hj s.t. yi ∗ hj − yj ∗ hi = 0. This requires
the algorithm to estimate all the amplitudes and channel taps
〈aj , tj〉 at a reference microphone m1, as well as the relative
delays of the channel taps between m1 and m2. Note that
these relative delays are a function of AoA, hence denoted as
∆m2

(θj). Fig. 1 illustrates the case for 2 microphones.
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Fig. 1. Channel taps and their relation to AoA.

Building on this, JADE [21] jointly estimates the delay and
AoA of each multipath using signal space analysis, and
VoLoc [2] iteratively solves the amplitude, delay, and AoA
of each multipath. Authors in [14] also show that sub-space
methods converge when channels and source signals satisfy
co-prime and linear complexity properties.

Issues: Existing solutions search over a large parameter
space, 〈aj , tj〉 and ∆m2(θj), leading to excessive computa-
tion and difficulties in convergence. Moreover, estimates of tj
are error prone because the microphones (in practical devices
like Amazon Echo) are separated by less than 5cm. Thus,
even small errors in these delay estimations contribute to
large AoA error. This calls for sub-sample accuracy with BCI
algorithms, which adds to the challenge in practical settings.

In contrast, AoA estimation does not need the tj estimates,
since we only rely on aj and ∆m2

(θj). This allows us to align

and cancel each path successively, resulting in efficient AoA
estimation. Finally, existing algorithms try to solve for all
paths using the same microphone pair; additional microphone
pairs only help increase the channel diversity and suppress
noise. In contrast, we can combine the residue vector from
different microphone pairs to cancel out the different paths.
The details follow.

3. THE ITERATIVE AOA (IAoA) ALGORITHM
3.1. Intuition
The high level idea in IAoA is to align the channel taps as-
sociated to θ1 for any pair of microphones, say {m1,m2},
and cancel them leaving only the subsequent taps (θ2, ...θK)
as residue. The same can be obtained from another pair, say
{m1,m3}. Now, across these two residues from the two pairs,
we intend to align and cancel the taps associated to θ2, requir-
ing us to search on ∆m2(θ2). We continue this iteratively till
θK , requiring one additional microphone-pair for every new
iteration. Observe that this relieves us from estimating tj in
each successive step – the key advantage with IAoA. Figure 2
shows the algorithmic flow (and will become clear later).

3.2. Primitives
Observe that direct path AoA, θ1, is computed from a micro-
phone pair 〈mi,mj〉. For θ2, we need two microphone pairs,
say 〈mi,mj〉 and 〈mu,mv〉. In general, θj needs to pick two
groups of microphones from the (j−1)th estimation residues.
To this end, we define a hierarchy of microphone groups. For
the θj estimation, we need the jth level microphone group,
denoted as Gj. We have:

G1 = {〈mi,mj〉|i 6= j}
Gk = {〈gi,gj〉|gi,gj ∈ Gk−1,gi 6= gj} ∀k > 1

where G1 denotes all the microphone pairs, G2 denotes pairs
of microphone pairs, and Gj is composed of two lower level
microphone groups. Of course, microphone groups allow
the same microphone to be chosen into different pairs, e.g.,
〈g1,g2〉 = 〈〈m1,m2〉, 〈m1,m3〉〉 ∈ G2.

3.3. The IAoA Algorithm
Step 1: Find direct path AoA θ1, then align and cancel:
For every microphone pair g = {mi,mj} in G1, IAoA esti-
mates θ1 from cross correlation.

θ1 = arg max
θ

∑
i,j

corr(Yi × z−∆mj
(θ), Yj × z−∆mi

(θ))

where corr is the correlation coefficient function, Yi =
FFT (yi), and ∆mj

(θ) is the relative signal delay at mj

(w.r.t. reference m1) for AoA θ. z−d denotes the z-transform
operation of delaying signal by time d. Now, aligning on θ1,
we calculate the cancellation residue R({mi,mj}) w.r.t. θ1.

R({mi,mj}) = Yi × z−∆mj
(θ1) − Yj × z−∆mi(θ1)
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Fig. 2. IAoA flowchart: Align and cancel on θ1 first, then align and cancel on θ2, using a pair of microphone pairs, and so on.

Step 2: Analyze the channel of the residue:
Note that residueR({mi,mj}) combines the shifted versions
of the 2nd path components. Figure 2 plots an example of
R({mi,mj}). We need to model this combined channel to
align and cancel the next path. For this, we denote the channel
response of the jth path at mi as Hi,j = ajz

−(tj+∆mi
(θj)).

For example, H2,1 is the direct path component at m2. Re-
call that aj is the path amplitude and tj is the path delay,
both of which will be canceled later. Thus, we have Hi =∑K
j=1Hi,j . The residue R({mi,mj}) can then be written as

R({mi,mj}) = Yiz
−∆mj

(θ1) − Yjz−∆mi
(θ1)

= X
(

(

K∑
k=2

Hi,k)z−∆mj
(θ1) − (

K∑
k=2

Hj,k)z−∆mi
(θ1)
)

= a2X
(
z−t2(z−∆mi

(θ2)+∆mj
(θ1) − z−∆mj

(θ2)+∆mi
(θ1))

)
+N(Hi,3:K , Hj,3:K)

= a2Xz
−t2D(i,j)(θ1, θ2) +N(Hi,3:K , Hj,3:K)

Di,j(θ1, θ2) := (z−∆mi
(θ2)+∆mj

(θ1) − z−∆mj
(θ2)+∆mi

(θ1))

where X = FFT (x), Di,j(θ1, θ2) is the combined channel
for 2nd path. N(H) is the residue from 3rd and later paths.

Step 3: Calculate the next AoA θj:
Now we have the residue R(g) and the combined channel
Dg(θ1:j−1, θj). Similar to Step 1, IAoA then calculates the
correlation coefficient to estimate the next θj . For micro-
phone group {gm, gn} in Gj,

θj = arg max
θ

∑
m,n

corr
(
R(gm)×D(gn)(θ1:j−1, θ),

R(gn)×D(gm)(θ1:j−1, θ)
)

R({gm, gn}) = R(gm)×D(gn)(θ1:j−1, θj)

−R(gn)×D(gm)(θ1:j−1, θj)

Note that the new residue R({gm, gn}) removes all the sig-
nals before the (j + 1)th path. IAoA now returns to Step 2 to
calculate the combined channel for the next path estimation.

3.4. Some Comments on the Algorithm
� Observe that the align and cancel method is correct by
design, i.e., it eliminates one channel tap at each iteration,
leaving a signal residue that only contains subsequent channel
taps. Failures occur when AoAs are angularly close, or when
later-arriving signal paths are much stronger than earlier paths
(causing θ2 to be estimated as θ3 in the second iteration, and
θ3 estimated as θ2 in the third iteration). � To alleviate such
failure cases, we propagate the top L θjs to the next iteration
(instead of the best) with corresponding likelihoods. This im-
plies θ2 and θ3 are jointly estimated from the third iteration
using the joint likelihood, where θ3 is searched over all angles
while θ2 is searched only over L values. Accuracy improves
in many cases. � The maximum number of AoAs we can
estimate is K = (M − 1). However, error will accumulate
over iterations and affect later θj estimations. In reality, it’s
hard to estimate K > 4 paths. � When excess microphones
are available compared to a desired K, it is possible to either
combine multiple microphone pairs to suppress noise, or use
a smaller subset for speed-up. � IAoA applies to RF signals
without modification. In fact, RF signals travel much faster
than acoustics, so searching for taps tj must be performed at
a much finer granularity. Since IAoA bypasses this search, the
benefits are greater. � IAoA can be executed on 3D AoAs as
well by extending the correlation over 3D angles.

4. EVALUATION
4.1. Simulation Setup and Results
We first simulate IAoA in MATLAB, with M = 6 micro-
phones, and a room impulse response generated for a 5m by
5m room [22]. The receiver location is varied with 1m granu-
larity, while the transmitter is always 1m away but at varying
angles (with 30◦ granularity). We aim to estimate K = 3
AoAs in this paper. For this, we run r = 3 iterations, factor-
ing out θj at the end of the jth iteration. However, we also
show the case where θ3 is estimated from r = 2 iterations, by
picking the θ that gives the second-largest correlation peak.

Figure 3(a) shows the CDF of the error in estimating θ2, for
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different number of iterations r, and SNR. The median error
for (r = 2, SNR = 10dB) is 1.68◦. For (r = 3, SNR =
10dB), the error reduces to 0.68◦. The improvement occurs
because the 3rd path contributes to θ2’s error in r = 2, but
modeling both paths in r = 3 reduces error.
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Fig. 3. Simulation CDF plot of (a) θ2 (b) θ3 estimation error
with different number of iterations (denoted r) and SNRs.

Figure 3(b) shows the CDF of the error in estimating θ3. The
median for (r = 2, SNR = 10dB) and (r = 3, SNR =
10dB) are 4.59◦ and 2.11◦, respectively. Of course, r = 3
outperforms r = 2 because the second-best choice in r = 2
does not cancel the 2nd path’s impact on θ3 estimation.

Figure 4 shows AoA errors in a room (each point on the
heatmap corresponds to the receiver location and the color at
that location represents the median AoA error from different
transmitter positions). Evidently, IAoA suffers when the re-
ceiver is near the center of the room where the wall-reflected
paths are weak. The direct path is much stronger, hence small
cancellation error from the direct path affects the estimation
of θ2 and θ3. Also, θ1 and θ2 are often very similar since θ2

arrives after reflection from the wall behind the transmitter;
θ3 does not suffer this problem, hence often performs better.
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Fig. 4. Median error in the room: (a) θ2 (b) θ3 with r = 3.

4.2. Real-world Experiment
Figure 5 shows our receiver device and an example experi-
mental setup. Our platform is a 6-microphone circular array
from SEEED ReSpeaker [17], mounted on a Raspberry Pi4
(64 GB) [23] (we cannot use off-the-shelf Amazon or Google
devices since they do not export the raw audio signals). The
device is placed in a bedroom of dimensions 2.61m by 2.67m,
around 0.5m away from two walls. A volunteer is asked to
speak the wake word “Siri” from different room locations.

Fig. 5. (a) The receiver composed of 6-Mic circular array
mounted on Raspberry Pi4. (b) Experiment setup.

Figure 6(a) shows the error CDF when estimating θ2. The
median error for r = 2 and r = 3 are 91.80◦ and 28.21◦

respectively. Observe that r = 3 considerably outperforms
r = 2 because the receiver is placed in the corner, hence the
reflections from two walls – the 2nd and 3rd multipath – have
similar amplitudes. This shows the value of jointly modeling
the 2nd and 3rd path to approximate the correct AoAs.
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Fig. 6. Real-world CDF plot of (a) θ2 (b) θ3 estimation with
different iterations.

Figure 6(b) shows the CDF of the third multipath’s AoA es-
timation error, θ3. The median error for r = 2 and r = 3 are
19.45◦ and 7◦, respectively. Again r = 3 is better because
it jointly models the 2nd and 3rd paths. Note that compared
with θ2, θ3 estimation has an appreciably lower error. This is
because there are some test cases where the user stands close
to the wall, causing the 2nd path to be angularly close to the
direct path (θ2 ≈ θ1). Hence, most of the 2nd path signal get
canceled during the direct path cancellation. As a result, in
the 2nd iteration, IAoA will align on θ3 instead of θ2.

Computation time: We evaluate IAoA on a desktop com-
puter equipped with Intel i7-4780, 3.7GHz. The median com-
pletion times for r = 2 and r = 3 are 2.9 and 30 seconds.

5. CONCLUSION

We develop IAoA, an algorithm that factors out multiple AoA
angles θ1:K from a microphone array. The technique holds
under tenable assumptions and performs reasonably well even
in real-world experiments. We believe IAoA can benefit sev-
eral applications, including localization, source separation,
and environment sensing in self-driving cars.
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