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ABSTRACT
Molecular communication has recently gained a lot of

interest due to its potential to enable micro-implants to com-

municate by releasing molecules into the bloodstream. In

this paper, we aim to explore the molecular communication

channel through theoretical and empirical modeling in order

to achieve a better understanding of its characteristics, which

tend to be more complex in practice than traditional wireless

and wired channels. Our study reveals two key new charac-

teristics that have been overlooked by past work. Specifically,

the molecular communication channel exhibits non-causal

inter-symbol-interference and a long delay spread, that ex-

tends beyond the channel coherence time, which limit decod-

ing performance. To address this, we design, 𝜇-Link a molec-

ular communication protocol and decoder that accounts for

these new insights. We build a testbed to experimentally

validate our findings and show that 𝜇-Link can improve the

achievable data rates with significantly lower bit error rates.
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1 INTRODUCTION
Molecular communication (MC) has emerged as a promis-

ing technology for communication through fluids such as

micro-implants communicating through the bloodstream or

sensors communicating through industrial pipes [4, 20, 34].

In MC, a device can transmit data by releasing molecules

into the fluid which are then transported and detected at a

receiver [55]. For example, a device can release molecules

to encode a “1” bit and release nothing to encode a “0” bit.

The receiver can measure the concentration of molecules to

determine whether the transmitted bit was a “1” or a “0”.

Molecular communication has the potential to enable mi-

cro and nano-implants to communicate with each other in-

side the human body and coordinate sensing and actuation

tasks. Recent advances in biomedical sciences have in fact

led to the development of nano-implants that can sense hu-

man vitals from inside the body and even travel through

the bloodstream to perform targeted drug delivery and treat-

ment [12, 30, 55]. There is significant interest in enhancing

the operation of such implants by connecting them using

MC [4, 5, 9, 10, 20–23, 34, 53]. MC presents a suitable alterna-

tive to other communication technologies such as wireless.

In particular, RF signals do not propagate well in fluids and

form factor constraints prevent scaling RF radios to micro

and nano-dimensions [40, 56, 66]. In contrast, for MC, re-

searchers can design synthetic cells that send and receive

molecular signals [17, 52, 57], nano-scale Lab-on-a-Chip that

monitor chemical content [30, 54, 61], and bio-implants that

collect and process data [41, 43, 51].

While there is still a long way to realize the above vision,

this paper takes steps to achieve a better understanding of

the characteristics of the MC channel from both theoretical

and empirical perspectives. TheMC channel tends to bemore

complex in practice than standard RF, optical, or copper wire

channels [28]. Understanding and addressing the differences

between these channels and MC allows us to improve the

performance of molecular communication.

There has been a significant amount of work on theoret-

ically modeling the MC channel [15, 16, 46, 47, 47, 58, 59,

62, 65, 68]. However, these models tend to be overly simpli-

fied with assumptions that do not hold in practice (e.g. no

inter-symbol-interference) or overly fitted to a closed form
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equation that does not capture practical constraints and im-

perfections (see section 7 for more details). Hence, these

models are only evaluated through simulations. On the other

hand, there has been little work on empirically validating

the MC channel models in fluids [19, 24, 60]. Performance in

these testbeds yields at best a data rate of 4 bits/sec with 3%

bit error rate (BER) [18]. However, this is achieved by using

deep neural networks to decode MC signals without explic-

itly learning or modeling the channel. While promising, the

approach requires the network to be trained for the specific

channels being tested and hence, might not generalize to

new channels that the neural network has not seen before

as we show in section 6.

In this paper, we build on the above theoretical and empiri-

cal work to capture the characteristics of the MC channel.We

introduce two new key properties that have been overlooked

by past work on MC. Specifically, the molecular communica-

tion channel exhibits non-causal inter-symbol-interference

and a long delay spread that extends beyond the channel

coherence time. We show how to leverage these new insights

to improve the decoding performance and achieve a higher

bit rate with lower bit errors. We also empirically validate

and incorporate insights introduced by past work such as the

presence of signal dependent noise and the channel response

resulting from the statistical behavior of molecular diffusion.

Our work, in particular, reveals the following two insights:

• Non-causal Inter-Symbol-Interference:Due to the sta-
tistical nature of diffusion, molecules released at the trans-

mitter can arrive at significantly different times at the

receiver even if they follow the same path. As a result,

the molecules of previous symbols can arrive late creat-

ing inter-symbol-interference (ISI). Molecules of future

symbols can arrive earlier than molecules of the current

symbol creating a non-causal ISI as well. In contrast, in

standard communication systems, ISI is caused only by pre-

viously transmitted symbols which can be decoded first to

eliminate their ISI as opposed to future unknown symbols

that cannot be decoded before the current symbol.

• Long Delay Spread vs. Coherence Time:1 In MC chan-

nels, the channel delay spread can be long (1 to 4 seconds)

which is of a similar order to the channel coherence time

(a few 10s of seconds) [3, 26]. Hence, the channel varies

only slightly slower than the time it takes us to estimate

it. Compare this to RF channels where the delay spread

(0.1𝜇𝑠 − 10𝜇𝑠) is orders of magnitude smaller than the co-

herence time (10𝑚𝑠 − 100𝑚𝑠) and we can quickly estimate

the channel and assume to be constant for the duration of

1
Coherence time refers to the time for which the channel impulse response

can be considered as static. Delay spread refers to the length of the chan-

nel impulse response, i.e., the time between the start and end of particles

corresponding to the same symbol arriving at a receiver.
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Figure 1: Experimental testbed for molecular communication in

fluids. The testbed consists of a background pump that generates

a bulk flow of water, pumps that transmit a “1” bit by releasing

NaCl (Salt) or “0” bit by releasing water. The salt solution is dyed

red to show its diffusion through the tube. The receiver is an EC

meter that measures the conductivity which is proportional to the

concentration of salt in the fluid.

packet transmission. However, in MC, simply estimating

the channel impulse response and using it to decode the

bits throughout the packet leads to poor performance.

To address the above issues, we design 𝜇-Link a molecular

communication protocol and decoder. Due to non-causal ISI,

𝜇-Link cannot sequentially decode bits. Instead, it jointly

decodes the current, future, and past symbols. To do so, the

receiver first estimates the channel impulse response us-

ing known preamble bits transmitted at the beginning of the

packet. This allows it to know howmany past and future sym-

bols will interfere with the current symbol being decoded.

We then design a sliding window block Viterbi decoder that

jointly decodes bits by accounting for both future and past

symbols. The decoder, however, suffers from high complexity.

To address this, we incrementally build the decoding graph

starting from the preamble and accounting only for valid

transitions and the 𝑘 highest probability states where 𝑘 is a

tunable parameter. As a result, we can maintain linear-time

decoding with negligible degradation in performance.

The above 𝜇-Link decoder, however, works under the as-

sumption that the channel impulse response is static. As

discussed earlier, the channel changes in the same order as

the time it takes us to estimate the channel. Hence, constantly

re-estimating the channel will result in a huge overhead that

leads to a very low data rate. To address this, we modify the

Viterbi decoder to jointly decode the bits and concurrently

update the estimation of the channel. Specifically, the de-

coder uses the soft values of the decoded bits as a confidence

metric to decide which bits were correctly decoded. The cor-

rectly decoded bits are then used to update the estimate of

the channel which is then used to improve the decoding.

We validate our MC channel model and the performance

of our 𝜇-Link decoder using an MC experimental testbed.



The testbed follows a similar approach to past experimental

testbeds on validating the molecular communication chan-

nel [19, 60]. Our testbed is shown in Fig. 1. It consists of a

network of narrow tubes and a pump that maintains a con-

stant flow of water in the tubes. Another pump is used as

a transmitter to release salt particles in the flowing liquid

and a sensor is used as the receiver to measure the presence

and concentration of these particles (See section 5 for more

details). Our results confirm the MC channel characteristics

we highlighted and show that by addressing these charac-

teristics, we can improve the data rate and reduce the bit

errors to achieve 5 − 10 bits/sec with 0.2% − 5% BER. This

is 2.5× the data rate for the same BER or 20× lower BER for

the same data rate as compared to [19] without the need to

train and use neural networks which suffer from overfitting

as we show in the results.

Contributions: The paper has the following contributions:

• It highlights two new key characteristics of the MC chan-

nel. To the best of our knowledge, none of the past work

address these two characteristics which significantly limits

the achievable data rates in practice.

• It presents a system that accounts for the characteristics

of the MC channel and specifically addresses the issues of

non-causality and long delay spread.

• It experimentally validates the findings and demonstrates

improvement in achievable data rates and BER.

2 BACKGROUND
In this section, we present a primer on molecular com-

munication in fluids. For further background, we refer the

reader to section 7 as well as the following surveys [4, 20, 34].

MC is a communication paradigm inspired by chemical

signaling between cells such as neurotransmitters and stim-

ulating hormones. Similar to how neurotransmitters release

molecules to signal an adjacent neuron, a device can trans-

mit data by releasing molecules into the medium which are

detected at a nearby receiver. While MC can work in both

gaseous and liquid mediums, this paper focuses on MC in

fluids due to its potential biomedical applications for commu-

nication between micro and nano-implants. In particular, we

assume the device releases molecules into a flowing liquid

in a micro-tube as shown in Fig. 1.
2

A. MC Transmitter: The transmitter can encode data bits

by adjusting the amount of released molecules, the type of

released molecules, or both [2, 8]. The simplest form of en-

coding is OOK (On-OFF Keying) where releasing molecules

represents a “1” bit and not releasing molecules represents

2
Note that, in a gaseous medium like air, wireless RF is a far superior mode

of communication as compared to MC. Hence, we focus on MC in fluids

since RF signals do not propagate well in fluids.

a “0” bit. Since the aim of this paper is to understand the

characteristics of the MC channel, we adopt an OOK encod-

ing. OOK helps simplify our analysis of the channel and is

likely to be the most practical type of encoding for future

applications like micro-implants.

B. MC Receiver: The receiver can decode the transmitted

bits by measuring the number of released molecules in the

liquid. In theory, there are two types of receivers: destruc-

tive (active) or non-destructive (passive). Non-destructive

receivers simply use a sensor to measure the concentration

of molecules and decode the bits [36]. The molecules are then

eliminated through the bulk flow of the liquid. Destructive

receivers, on the other hand, absorb the molecules from the

medium in order to decode the bits [14, 18]. In this paper,

we focus on non-destructive receivers since they are simpler

to implement using sensors making them more practical for

MC applications. We also assume the receiver response is lin-

ear, i.e., the measured value at the receiver is linearly related

to the concentration/number of molecules at the receiver.

C.MCChannel: The transmitted molecules are transported

from the transmitter to the receiver through molecular prop-

agation which is governed by three physical properties: ad-
vection, molecular diffusion, and turbulent diffusion [28].

• Advection refers to the transport of molecules along a bulk

flow. For example, in biomedical applications, this could

be the flow of the blood stream that carries molecules from

one location to another. Advection significantly speeds up

the delivery of molecules which from a communication

perspective reduces the latency of communication.

• Molecular Diffusion refers to the random motion of mole-

cules as they collide with neighboring substances in the

medium and spread throughout the space. Molecular diffu-

sion is inevitable in nature since particles are self-propelled

by thermal energy which results in a well-known phenom-

enon called Brownian Motion.
• Turbulent Diffusion refers to the random motion of mole-

cules due to mass transport. It occurs much more rapidly

than molecular diffusion and is characterized by chaotic

changes in pressure and flow velocity. It is well common

in nature such as in blood flow or air flow.

The above properties is formally described using Fick’s
Law and the advection-diffusion equation which describe the

statistical behavior of large amount of molecules [38]:

𝜕𝐶

𝜕𝑡
+ ∇ · (®v𝐶) = ∇ · (𝐷∇𝐶) + 𝑅 (1)

In the above equation, 𝐶 (®x, 𝑡) denotes the concentration of

particles as a function of location ®x and time 𝑡 ; ®v denotes

the velocity vector (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) of the advection bulk flow; ∇𝐶
denotes the gradient of 𝐶 and ∇· denotes the divergence of
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Figure 2: Intern-Symbol-Interference (ISI) in MC vs. RF channels.

the vector. 𝑅(®x, 𝑡) represents the input molecules released

by the transmitter at a given location and time. Finally, 𝐷

denotes the diffusion coefficient. Note that Fick’s Law applies

to both molecular and turbulent diffusion with a different

values of 𝐷 .3 Since the value of D is typically much larger

for turbulent diffusion, it is common to ignore molecular

diffusion in presence of turbulence [1].

For simplicity, we assume a 1D unbounded channel since

we focus on MC in micro-tubes. The transmitter is at the

origin ®𝑥𝑡 = ®0 and releases an impulse of 𝑁 molecules at time

0, i.e. 𝑅 = 𝑁𝛿 (0, 0). Under such conditions, Eq.1 becomes:

𝜕𝐶

𝜕𝑡
+ 𝜕

𝜕𝑥
(𝑣𝐶) = 𝐷 𝜕

2𝐶

𝜕𝑥2
+ 𝑁𝛿 (0, 0) (2)

The solution to Eq.2 give us:

𝐶 (𝑥, 𝑡) = 𝑁
√
4𝜋𝐷𝑡

exp

(
− (𝑥 − 𝑣𝑡)

2

4𝐷𝑡

)
(3)

which represents the channel impulse response (CIR).

Finally, assuming there is a passive receiver at position ®𝑥𝑟
with a molecular sensor volume 𝑉 , the probability that the

receiver detects the molecules as a function of time is:

𝑝 (𝑡) = 𝑉 ·𝐶 (𝑥𝑟 , 𝑡) (4)

3 MC CHANNEL CHARACTERISTICS
In this section, we highlight key unique characteristics

of the molecular communication channel that differ from

traditional wireless and wired communication. We use the

theoretical model of the channel presented in the previous

section to explain these characteristics. Later in section 6,

we empirically validate that this model is linear and fits the

channel impulse response (CIR) we see in practice. We also

3𝐷 is typically used as the notation of diffusion coefficient for molecular

diffusion, while 𝐾 is used for turbulent diffusion. For simplicity, we use 𝐷

to represent both in this paper.

validate all the characteristics presented here. Note how-

ever that our 𝜇-Link decoder does not use the theoretical

CIR equation for decoding. Instead, it directly estimates and

updates the CIR without trying to do parameter fitting.

We introduce two new characteristics which have been

overlooked by past work: Non-causal ISI and Long delay
spread vs. Coherence time. We also highlight a third one,

signal dependant noise. While it has been covered by past

work [27, 31], it is an important to account for it in 𝜇-Link.

3.1 Non-causal Inter-Symbol Interference
In communication systems, data bits are encoded into data

symbols and transmitted over the channel. Inter-symbol in-

terference (ISI) occurs when signals corresponding to dif-

ferent data symbols arrive at the same time at the receiver,

which creates interference. In wireless RF communication,

for example, ISI is mainly caused by multipath where signals

from previously transmitted symbols travel along longer

reflected paths and arrive late at the receiver interfering

with later symbols. In such cases, ISI is causal i.e. only previ-

ous symbols can interfere with current and future symbols.

Future symbols, on the other hand, cannot interfere with

current or previous symbols since they cannot arrive earlier.

This, however, is not the case in molecular communication

where due to the randomness of diffusion, molecules from

future symbols can arrive earlier. As a result, the ISI is non-

causal and both future and previous symbols can interfere

with the current symbol. In particular, molecules of previous

symbols can linger and arrive late creating interference with

the current symbol, and molecules of future symbols can

arrive earlier than molecules of the current symbol creating

interference as well. Such non-causal ISI does not typically

occur in other communication systems. To the best of our

knowledge, it has never been addressed by past work in MC

which limits the decoding performance.

To better understand this problem, consider the example

in Fig. 2. Decoding achieves the highest confidence when the

signal is sampled at its strongest, which is achieved around

the peak of the channel impulse response. Let 𝑐0 denote

the peak of the unit pulse response as shown in Fig. 2a.

Let 𝑐1, 𝑐2, ..., 𝑐𝑀 denote samples on the tail corresponding

to molecules that arrive later and influence the following

symbols which we call forward-ISI. Let 𝑐−1, 𝑐−2, ..., 𝑐−𝐹 denote
samples on the head that arrive early and influence previous

symbols which we call backward-ISI. Let 𝑏𝑘 be the transmit-

ted symbol, the sampled concentration 𝑟𝑘 is:

𝑟𝑘 =

∞∑︁
𝑖=−∞

𝑐𝑖𝑏𝑘−𝑖 ≈
𝑀∑︁
𝑖=−𝐹

𝑐𝑖𝑏𝑘−𝑖 (5)

Thus, to decode symbol 𝑏𝑘 , we need to know the 𝑀 previ-

ously transmitted symbols as well as the 𝐹 future symbols.



In RF communication, on the other hand, the following

symbol can never arrive early before the current symbol as

shown in Fig. 2b. Hence, to decode symbol 𝑏𝑘 , we only need

to know the previously transmitted symbols. This signifi-

cantly simplifies the decoder since we can decode symbols

sequentially which will give us the previously transmitted

symbols. Furthermore, since wireless signals travel a the

speed of light, ISI occurs only between consecutive symbols.

3.2 Long Delay Spread vs. Coherence Time
In communication systems, in order to correctly decode

the bits, the channel impulse response (CIR) must be esti-

mated and corrected for. The CIR has two key properties:

delay spread and coherence time.

• Delay Spread: represents the length of the channel im-

pulse response in time. In wireless communication, delay

spread is mainly caused by multipath where the signal trav-

els along different paths and arrives at different times at the

receiver. In this case, the delay spread represents the time

between the arrival of the first copy of the signal along the

shortest path and the arrival of the last copy of the signal

that is above the noise floor. However, since wireless signals

travel at the speed of light, the difference in arrival time is

typically of the order of nano to micro seconds. The delay

spread also decreases as the distance between the transmitter

and receiver increases since signals that travel along reflected

paths start to arrive below the noise floor.

In contrast, delay spread in molecular communication

is mainly caused by diffusion of molecules where different

molecules arrive at different times at the receiver. Since diffu-

sion is slow, legacy molecules tend to remain in the channel

creating a very long tail. As a result, the delay spread can

easily extend to multiple seconds. Fig. 3 shows an example of

channel impulse response when the transmitter and receiver

are 0.5, 1 and 2 meters apart. As can be seen, the delay spread

can be as large as 2.5 seconds and expands as the distance

increases, making the channel even harder to estimate.

• Coherence Time: corresponds to the time for which the

channel impulse response can be considered fixed. Inwireless

communication, this is of the order of tens to hundreds of

milliseconds which is orders of magnitude larger than the

delay spread of the channel. Hence, it is possible to send a

few training symbols at the beginning of a packet to estimate

the CIR which can then be used to decode the bits throughout

the packet. In molecular communication, however, the delay

spread is of the same order as the channel coherence time.

As a result, the channel changes as fast as the time it takes to

estimate it. It is not possible to simply estimate the channel

and use it to decode bits throughout the packet. Continuously

estimating the channel, on the other hand, would result in a

huge overhead that significantly reduces the data rate.
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Figure 3: The molecular channel impulse response when the

receiver is 50, 100, and 200 centimeters away from the transmitter.

3.3 Signal-Dependent Noise
The randomness of diffusion creates signal-dependent

noise. In particular, the receiver will sample the concentra-

tion of molecules. Let 𝑟𝑘 be the sampled concentration at

the receiver, then 𝐸 [𝑟𝑘 ] = 𝜇𝑘 = 𝐶 (𝑥𝑅, 𝑘Δ𝑡) where 𝑥𝑅 is the

location of the receiver. In case of multiple symbols, 𝜇𝑘 is

given by Eq. 5. Let 𝑁𝑘 be the number of molecules at the

receiver, then 𝑁𝑘 = 𝑉 𝜇𝑘 where 𝑉 is the detection volume of

the receiver. The arrival of particles at the receiver follows a

Poisson distribution with the same mean and variance. For

tractability, the distribution can be approximated as Gauss-

ian, i.e. 𝑁𝑘 ∼ N (𝑉 𝜇𝑘 ,𝑉 𝜇𝑘 ) [31]. Hence, the distribution of

the sampled concentration 𝑟𝑘 is:

𝑟𝑘 ∼ N
(
𝜇𝑘 ,

𝜇𝑘

𝑉

)
(6)

The variance of the above distribution is proportional to the

concentration. As a result, the noise in the signal is dependent

on the signal itself and releasing more molecules to increase

the signal strength increases the noise as well.

Compare this to wireless or wired communication where

the noise is independent of the transmitted signal. There, the

expectation of the distribution represents the signal whereas

the variance represents the noise. The independence of noise

has two important consequences. First, increasing the signal

strength significantly increases the Signal-to-Noise Ratio

(SNR). Second, maximum-likelihood decoders can bemapped

into simple decision rules for demodulation (e.g. in BPSK,

it is sufficient to check whether the real part of the symbol

is positive or negative to decode “1” or “0” bit.) . However,

such decoders designed for Additive White Gaussian Noise

(AWGN) channel do not work well over the MC channel [31].

4 𝜇-LINK
This section describes the 𝜇-Link communication protocol

and decoder. 𝜇-Link starts by sending a short preamble of

known bits which are used for packet detection, channel

estimation, and synchronization. The preamble is followed

by data bits which are decoded using Hidden Markov Models

and a Viterbi decoder customized to account for the specific

characteristics of MC channels. 𝜇-Link uses On-Off Keying

and encodes a “1” bit by releasing molecules into the flow

and a “0” by releasing nothing. Alg. 1 provides a high-level



pseudo-code for 𝜇-Link’s overall protocol and decoder. In

the rest of this section, we describe 𝜇-Link in detail.

4.1 Channel Estimation & Synchronization
Every 𝜇-Link packet starts with a “1” bit, i.e. a pulse of

molecules released into the liquid. The receiver constantly

monitors the concentration of molecules and when it detects

an increase in the signal strength i.e. concentration level,

it triggers packet detection. However, due to the molecular

channel, a transmitted pulse will result in a slow rise in

concentration of molecules at the receiver followed by a

slow drop with a very long tail as we have shown in Fig. 3.

Hence, packet detection is likely to be triggered ahead of

the peak signal strength of the transmitted symbol. It is

important, however, to synchronize our decoder to the peak

of the signal in order to maximize the SINR of each symbol.

Consider the example of the received signal, shown in blue,

in Fig. 4. The channel impulse response (CIR) is shown in red

which spans multiple symbols due to its long delay spread. If

we synchronize our symbols to the first rise in signal strength,

then the signal value will not properly represent the bit

transmitted in each symbol. However, if we synchronize our

symbols to the peak of the channel impulse response, then

the signal value will be aligned with the bit transmitted in

each symbol. This allows the decoder to achieve the highest

confidence in decoding each bit since the signal is sampled

at its strongest value with the minimal ISI , i.e. maximum

SINR, as can be seen from the dotted red lines in Fig. 4.

In order to synchronize the decoder, we must first estimate

the channel impulse response (CIR) to detect the peak of the

signal. A simple approach is to start the preamble by trans-

mitting a “1” bit followed by a lot of “0” bits. In principle,

this would allow us to detect the peak. However, sending a

single “1” bit results in a weak signal that is very susceptible

to noise which compromises the accuracy of our channel

estimation. Transmitting additional “1” bits in the pream-

ble would increase the concentration of molecules making

channel estimation more robust to noise which is needed for

decoding data bits. Hence, 𝜇-Link’s preamble is formed of a

“1” bit followed by a pseudo-random sequence of bits similar

to the one shown in Fig. 4. The pseudo-random sequence

improves the accuracy of channel estimation.

While 𝜇-Link’s design is driven by the theoretical channel

model introduced in Eq. 3, 𝜇-Link’s channel estimation does

not try to fit the estimated CIR to that model as it might not

capture all practical constraints of the environment. Instead,

𝜇-Link explicitly estimates the CIR using a Least Squares (LS)

method. Specifically, the received signal can be written as

𝑟 (𝑡) = 𝑐 (𝑡) ∗𝑏 (𝑡) where 𝑐 (𝑡) is the channel impulse response

shown in Fig 3 and 𝑏 (𝑡) is the sequence transmitted bits.

For the preamble, we can rewrite the received samples in

1 0 0 1 1 0 0 1 0 …

1 0 0 1 1 0 0 1 0 …

Time

Si
gn
al

SYNC at Rise:

SYNC at Peak:
Received 

Signal

Channel 
Response

Figure 4: Blue curve depicts received signal without noise, while

orange curve separates contribution of each bit. Synchronizing at

the CIR peak will give higher SINR than the CIR start.

vector format as: r = Bcwhere B is the Toeplitz matrix of the

preamble bits and each column of B is a zero-padded version

of the preamble bits. Thus, the LS estimator of c is:

c̃ = (B𝑇B)−1B𝑇 r (7)

where (B𝑇B)−1B𝑇 is the pseudo-inverse of B.
After we estimate the channel c, we can find the peak

value of the CIR and align our decoder to the peak sample

in c. It is worth noting that the receiver can oversample 𝑟 (𝑡)
to improve decoding performance. In this case, B and c will
represent oversampled versions of the preamble and the CIR.

4.2 Decoder
Decoding in molecular communication tends to be more

complex than traditional wireless and wired systems. In par-

ticular, due to the long delay spread and non-causal ISI, each

sampled value is a combination of many consecutive symbols

including previous as well as future symbols which must all

be jointly decoded. Moreover, widely adopted decoders for

white Gaussian noise channels are non-optimal in molec-

ular channels due to signal dependent noise. As a result,

𝜇-Link adopts a Hidden Markov Model (HMM) to describe

the molecular communication process and decodes using a

sliding window block Viterbi algorithm.

4.2.1 Hidden Markov Model: Recall that in HMMs, a hidden

Markov chain consists of an unknown sequence of states

each of which probabilistically generates (emits) an observa-

tion. The observations are then used to infer the hidden states

based on known transition and emission probabilities. In the

context of 𝜇-Link, the hidden states represent transmitted

bits and the observations represent received signals.

𝜇-Link defines an HMM state 𝑠𝑘 as a sequence of trans-

mitted bits that contribute to the observation of the received

signal 𝑟𝑘 as shown in Fig. 5. As described in section 3.1, 𝑟𝑘 is

a combination the current bit, the𝑀 previous bits, and the 𝐹
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Figure 5: 𝜇-Link’s HMM where states represent a sliding window

of bits accounting for both causal and non-causal ISI.

future bits weighted by the channel impulse response. Thus,

𝑠𝑘 = {𝑏𝑘−𝑀 , 𝑏𝑘−𝑀+1, · · · , 𝑏𝑘 , · · ·𝑏𝑘+𝐹 }, (8)

i.e., the HMM states represent a sliding window of 𝑊 =

𝑀 + 𝐹 + 1 bits that account for both causal and non-causal ISI

where𝑊 is the delay spread.𝑀 and 𝐹 are computed based

on the estimated channel impulse response. For example, the

channel shown in Fig. 5 has𝑀 = 8 and 𝐹 = 3.

The transition probability between states depends on the

modulation and coding scheme being used. In case of On-

OFF keying, each Markov state has only two valid transitions

depending on whether the next bit to be added to the sliding

window is a “0” or a “1”. Thus, give an arbitrary state 𝑠𝑖 =

{𝑠𝑖 [1], · · · , 𝑠𝑖 [𝑊 ]}, the state transition probability is:

𝑃 (𝑠𝑖+1 |𝑠𝑖 ) =


1

2
𝑠𝑖+1 = {𝑠𝑖 [2], · · · , 𝑠𝑖 [𝑊 ], 0}

1

2
𝑠𝑖+1 = {𝑠𝑖 [2], · · · , 𝑠𝑖 [𝑊 ], 1}

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

Moreover, given a channel impulse response c and an arbi-

trary state 𝑠𝑖 = {𝑠𝑖 [1], · · · , 𝑠𝑖 [𝑊 ]}, the emission or observa-

tion probability is defined as:

𝑃 (𝑟𝑖 |𝑠𝑖 ) = N
(
𝜇𝑖 ,

𝜇𝑖

𝑉

)
(10)

which follows from Eq. 6 for signal dependent noise in MC

channels. N is the normal (Gaussian) distribution, 𝜇𝑖 is the

expected value of 𝑟𝑖 given 𝑠𝑖 and c, and 𝑉 is the detection

volume at the receiver. 𝜇𝑖 can be written as:

𝜇𝑖 =

𝑀∑︁
𝑗=−𝐹

𝑐 𝑗𝑠𝑖 [𝑀 + 1 − 𝑗] (11)

4.2.2 Block Viterbi Algorithm: The above HMM is solved

using a block Viterbi decoder which returns the maximum-

a-posteriori (MAP) solution of the Markov state transition

sequence, i.e. the solution that maximizes the joint proba-

bility 𝑃 (𝑠1, · · · , 𝑠𝐿, 𝑟1, · · · , 𝑟𝐿) where 𝐿 is the total number of

bits being decoded. The Viterbi decoder uses the following

! "!, … , ""#!, %!, … , %"#! =
! "!, … , "" , %!, … , %" ⋅ ! ""#! "" ⋅ !(%"#!|""#!)

00

01

10

11

…

"!"# "! "!$#"!"% "!$%

0 1 1 1

most
likely

Figure 6: A simple example of a Viterbi decoding graph. Blue

arrow points to transmission probability (hidden state), the orange

points to emission probability (signal-dependent noise), and the

red indicate the most likely path.

dynamic programming equation to solve the problem:

𝑃 (𝑠1, · · · , 𝑠𝑘+1, 𝑟1, · · · , 𝑟𝑘+1)
= max{𝑃 (𝑠1, · · · , 𝑠𝑘 , 𝑟1, · · · , 𝑟𝑘 )𝑃 (𝑠𝑘+1 |𝑠𝑘 )𝑃 (𝑟𝑘+1 |𝑠𝑘+1)}

Fig. 6 shows a simplified example of the Viterbi decoder

for𝑊 = 2 where the most likely path is highlighted in red.

However, for practical MC channels,𝑊 can easily exceed

10, similar to Fig. 5 where𝑊 = 12. The number of states in

the Viterbi graph is 2
𝑊
. Thus, the Viterbi decoder requires

𝑂 (𝐿2𝑊 ) memory and computation which for a 100 bit packet

with𝑊 = 12 results in > 400, 000 operations. To address this,

we incrementally build the Viterbi decoding graph starting

from the preamble and accounting only for valid transitions

and the 𝐾 highest probability states where 𝐾 is a tunable

parameter. Hence, only the top 𝐾 states are considered at

every stage of the Viterbi decoder which reduces the number

of operations to 𝑂 (𝐿𝐾) resulting in a practical decoder com-

plexity. For example, in our evaluation, when𝑊 = 12 and we

have 4096 states, we set𝐾 = 128. Furthermore, due to the use

of a sliding window, the decoder does not need to memorize

all the columns in the Viterbi graph shown in Fig. 6. Instead,

it is sufficient to store the 𝐹 previous columns which reduces

the memory requirement to 𝑂 (𝐹𝐾). This allows 𝜇-Link to

efficiently adapt to longer packet lengths (i.e. larger 𝐿) and

MC channels with longer delay spread (i.e. larger𝑊 ).

4.2.3 Channel Tracking. The above 𝜇-Link decoder accounts
for non-causal ISI, long delay spread, and signal dependent

noise. However, it assumes that the channel impulse response

is known and fixed. This is not true in MC channels where

the channel coherence time is of the same order as the delay

spread. Thus, the time it takes to estimate the channel is

only slightly longer than the time it takes for the channel to

change. Re-estimating the channel, by sending more pream-

ble or pilot bits, would result in a huge overhead since the

CIR is very long and we can only send a few data bits before

we need to estimate the channel again.



Algorithm 1 𝜇-Link Protocol & Decoder Pseudo-code

1: r← sampled signal at receiver.

2: bp ← known preamble bits.

3: 𝑡𝑠𝑡𝑎𝑟𝑡 ← PacketDetection(r)
4: c← ChannelEstimate(r, bp, tstart)
5: 𝑀, 𝐹 ← GetISI(c)
6: 𝑊 ← 𝑀 + 𝐹 + 1
7: HMM← Viterbi.init(𝑀, 𝐹, r, b𝑝 , 𝐾)
8: 𝑡𝑠𝑦𝑛𝑐 ← Sync(r, c, tstart)
9: 𝑖 ← 𝑡𝑠𝑦𝑛𝑐 + 𝑙𝑒𝑛𝑔𝑡ℎ(b𝑝 )
10: while 𝑖 < 𝐿 do
11: // Viterbi Forward Pass

12: HMM← Viterbi.updateProb(HMM, r[𝑖], c, 𝐾)
13: // Viterbi Backward Pass

14:
˜b[𝑖 − 𝐹 ] ← Viterbi.decode(HMM)

15: if 𝑖 mod 𝑇 = 0 then
16: c← Viterbi.channelTrack(c, ˜b, r)
17: 𝑖 ← 𝑖 + 1

𝜇-Link tracks the CIR throughout the packet without send-

ing any additional preamble or pilot bits. To do so, 𝜇-Link

outputs the decoding results of the Viterbi dynamic program-

ming algorithm without waiting till the end of the sequence

as shown in line 14 of Alg. 1. After every 𝑇 iterations of the

Viterbi algorithm, 𝜇-Link uses the decoded bits as a ground

truth to re-estimate the channel impulse response. In order

to minimize errors, 𝜇-Link adopts the following:

(1) It leverages the soft values (probabilities) of the window

blocks of decoded bits as a decoding confidence metric

to decide which bits should be used for re-estimation.

(2) It avoids the last 𝐹 bits for which the decoded values can

not yet be trusted due to non-causal ISI from the current

and futures bits that have not been decoded.

(3) It rejects new CIR estimates that vary significantly from

the most recent CIR estimate. In particular, if wrongly

decoded bits are used, the CIR will exhibit huge changes

that do not match the diffusion model of MC.

The above criteria ensures that 𝜇-Link generates reliable

estimates of the channel throughout the packet.

5 TESTBED
In order to evaluate 𝜇-Link and our insights into the MC

channel, we build an MC experimental platform shown in

Fig. 1 and Fig. 7. The testbed follows a similar approach

to past experimental testbeds on validating the molecular

communication channel [19, 60]. The testbed is built up with

common and non-harmful materials, and can be divided into

three parts: channel, transmitter and receiver.

• Channel: The channel is mainly formed of a network of

tubes with flowing water. A background pump continuously

Figure 7: AMolecular Communication Testbed with a single path.

delivers water into the tubes to maintain a stable flow from

the transmitter to the receiver and propel the propagation

of molecules. The path between TX and RX is not limited to

the single tube shown in Fig. 7, but can be a combination of

tubes/paths as shown in Fig. 1.

• Transmitter: The transmitter is composed of three peri-

staltic pumps: two data pumps and one compensation pump.

The data pumps either inject saline solution to encode a “1”

bit or pure water to encode a “0” bit. During a symbol interval,

the data pumps only inject liquid for 50 ms. The compensa-

tion pump will inject water for the remaining time in the

symbol interval in order to compensate for flow variation.

•Receiver: The receiver uses an EC (electrical conductivity)

reader, controlled by an Arduino board. The value output by

the ADC is linearly related to the EC value which is in turn

linearly related to the concentration of salt.

6 EVALUATION
In this section, we start by validating the characteristics

of the molecular communication channel presented in this

paper. We then evaluate the performance of 𝜇-Link and

compare it tp past work. Finally, we provide some micro-

benchmarks that give insights into 𝜇-Link’s performance.

6.1 Channel Validation
We start by providing results and illustrative examples

that validate the diffusion channel model presented in Eq. 3,

the linearity of the channel, the signal dependent noise, the

delay spread and the non-causal ISI.
4

6.1.1 Diffusion Channel Model. Fig.8 provides a model fit-

ting of the channel model in Eq. 3 to a channel impulse

response measured on our testbed in which the receiver

is at a distance 𝑥 = 0.25𝑚 from the transmitter. We fit

the CIR parameters as 𝑣 = 0.33𝑚/𝑠 and 𝐷 = 0.025𝑚2/𝑠 .
The figure shows that the testbed provides a good plat-

form for molecular communication that incorporates the

advection-diffusion properties and closely matches the the-

oretical model. However, the equation cannot fully capture

4
The channel coherence time property will be evaluated in section 6.3 by

showing that if we do not track the changing channel frequently enough,

our decoding performance will suffer.
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Figure 8: Curve fitting for single-tube MC channels to Eq. 3.
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Figure 9: Channel linearity validation experiment. The sum of

signals by two complementary sequences roughly match the signal

by the sum of these two sequences.

some of the hard to model properties in practical testbeds,

such as, the non-uniformity of diffusion and turbulence

throughout the testbed.

6.1.2 Linearity. Our design as well as Eq. 5 assume that the

receiver is linear, i.e. the measured concentration is a sum of

the concentrations resulting from individually transmitted

bits. To verify this assumption, we transmit 3 sequences of

bits: 𝑆1, 𝑆2, and 𝑆3 and measure the received signals 𝑅1, 𝑅2,

and 𝑅3 respectively. 𝑆1 and 𝑆2 are two random sequences

with non-overlapping “1”s shown in red and blue in Fig. 9.

𝑆3 = 𝑆1 +𝑆2 and is shown in black. If the model is linear, then

we should get 𝑅3 = 𝑅1 +𝑅2. Fig. 9 plots 𝑅1, 𝑅2, 𝑅3, and 𝑅1 +𝑅2
after averaging them over multiple runs to eliminate noise.

The figure shows that 𝑅3 closely matches 𝑅1 + 𝑅2. While the

curves do not perfectly match, the approximation is sufficient

to yield good performance in practice.

6.1.3 Signal-Dependent Noise. To measure the noise in the

channel, we send a pulse followed by a long sequence of

zeros to directly compute the channel shown on the top of

Fig. 10. We repeat the measurement many times and compute

the variance at each point of the channel across the mea-

surements which we denote as the noise. Fig. 10 plots the

noise power as a function of the signal power. While we can-

not separate thermal Gaussian noise from signal-dependent

noise, the graph clearly shows that higher signal power leads
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Figure 10: SDN validation experiment. CIR is computed from data

between manually synchronized transmitter and receiver. Noise of

each CIR sample is plotted in the same color of the sample.
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Figure 11: Delay spread and non-causality statistics. For 100 cm

molecular channel, information particles takes longer time to propa-

gate from transmitter to receiver, so diffusion takes more proportion

in CIR and makes more ISI than 50 cm channel.

to a higher noise variance indicating that the noise is depen-

dent on the signal. Note that the signal dependent noise is

higher in the samples corresponding to the rising head of the

CIR likely due to imperfections in the transmitter pumps.

6.1.4 Long Delay Spread and Non-causality ISI. Fig.11 em-

pirically validates the long delay spread and non-causality

properties of the molecular channel. After estimating each

channel with the preamble, the delay spread is computed as

the period from when the CIR first reaches 10% of the peak

value until it drops below 10%. Similarly, the non-causal

ISI duration is computed as the period from when CIR first

reaches 10% of the peak value until it achieves the maximum

peak. Fig.11 plots the CDF of the delay spread and the non-

causal ISI duration for when the receiver is 50 cm and 100 cm

away from the transmitter. The median delay spread is 1.2s at

50 cm and increases to 1.5s at 100 cm which spans 12 and 15

symbols at a bit rate of 10 bps. The maximum, however, can

reach 2.4s which would create ISI for 24 symbols at 10 bps.

The median non-causal ISI duration is 0.27 sec and 0.36 sec

for 50 cm and 100 cm respectively which affects 2 - 4 symbols

at 10 bps. As we increase the bit rate, the influence of ISI

extends to more symbols which presents a major obstacle

for improving the data rate in MC.
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Figure 12: 𝜇-Link LS and RNN performance on single-path channel of 50 cm (left) and 100 cm (middle), and on two-path channel of 50 cm

and 70 cm (right). 𝜇-Link and RNN achieves comparable performance, and show great advantage over LS decoder.

6.2 𝜇-Link’s Performance
In this section, we evaluate the performance of 𝜇-Link.

6.2.1 Baselines. We compare 𝜇-Link to two state-of-the-art

decoding techniques:

• Least Square (LS) Decoder: The LS decoder is very sim-

ilar to the LS channel estimation introduced in Sec. 4. The

main difference is that now we know the CIR and wish to

estimate the bits. Hence, we write the CIR into Toeplitz

matrixC and multiply its pseudo-inverse with the received

samples to get the LS solution
˜b = (C𝑇C)−1C𝑇 𝑟 .

• RNN decoder: Recent work in [18] leveraged Recurrent

Neural Networks (RNN) to decode MC. Specifically, [18]

uses Long Short-TermMemory (LSTM) which is especially

good at processing time sequences. The LSTM uses a slid-

ing window for decoding and has a bi-directional structure,

i.e. the sequence is analyzed in both forward and back-

ward directions. We implement and train the bi-directional

LSTM using the same neural network architecture and pa-

rameters described in [18].

6.2.2 Dataset. We collect a large dataset of molecular sig-

nals. Our dataset includes sequences with varying symbol

interval (i.e. bit rate) and distance between transmitter and

receiver. The dataset is divided into two parts. The first is for

single-path channel shown in Fig. 7. We test for distances

of 25, 50 and 100 cm. The second part of the dataset is for a

two-path channel shown in Fig. 1. The paths have distances

of 50 and 70 cm. In both parts, we vary the symbol interval

between 100 and 500 ms which translates to bit rates rang-

ing from 2 to 10 bps. For each experiment, we transmit 100

different sequences, each containing 100 bits. For the RNN

decoder, 70% of the dataset is used for training.

6.2.3 Results. Fig. 12 summarizes the average BER perfor-

mance as a function of bit rate for all three decoders: 𝜇-Link,

LS, and RNN. As expected, the BER degrades as the bit rate

increases, i.e. the symbol length decreases. However, the LS

decoder shows a major increase in BER with increasing bit

rate where at 10 bps the BER is above 20% for the single

path channels and 37% for the two path channel. The BER

degradation in case of 𝜇-Link and the RNN is significantly

less. For the single path channels at 10 bps, 𝜇-Link and the

RNN achieve a BER of around 5%. However, for the two path

channel at 10 bps, 𝜇-Linkachieves a BER of 5% whereas the

RNN achievers a BER of 10%. Compared with single-path, a

two-path channel incurs longer delay spread and more ISI.

This is because the same amount of flow splits into two tubes,

decreasing the flow velocity and increasing propagation time.

In such a case, 𝜇-Link’s explicit CIR estimation outperforms

the RNN’s ability to implicitly account for the channel.

The advantage of 𝜇-Link over the RNN is further empha-

sized once we consider the RNN’s need for offline training on

a large dataset specific to the channel. Training for one kind

of channel is unlikely to generalize to other and possibly

more complicated channels. To verify this, we run an experi-

ment where we train the RNN for specific channels and test

it on different channels in the dataset. Specifically, we omit

data for certain distances or bit rates from the training set.

Fig. 13 shows the performance of the RNN using different

training sets but the same testing set on single-path channel.

For the training set:

• “all dist” refers to distances of 25, 50, and 100 cm.

• “all rate” refers to bit rates: 2, 2.5, 3.3, 5, 5.7, 6.7, 8 & 10 bps.

• “some dist” refers to 25 and 50 cm only.

• “some rate” refers to bit rates: 2, 2.5, 3.3, 5, & 10 bps.

Fig. 13 shows that the performance of the RNN is good

only if the training set contains “all dist + all rate” which

covers all possible channels in the data set. However, as soon

as, “some dist” or “some rate” are not in the training set, the

RNN performance is extremely poor. For example, in the case

“some dist + all rate”, the RNN constantly performs worse

with BER larger than 15% at bit rates above 5 bps. In the

case of “all dist + some rate”, the figure shows that the RNN

performs well for rates that are included in the training set

such as 3.3, 5, and 10 bps and performs very poorly for rates

that are not in the training set such as 5.7, 6.7, and 8 bps

where the BER is larger than 20%. Thus, while RNNs can be

useful for decoding MC, they require training for all possible

channels and bit rates which is not practical.

Finally, 𝜇-Link is able to significantly improve the BER

and the achievable bit rates compared to LS decoding. It is

able to achieve comparable performance to the RNN when



 0

 0.1

 0.2

 0.3

 0.4

 0.5

10bps 8bps 6.7bps 5.7bps 5bps 3.3bps

B
E

R

Bitrate (bps)

all dist + all rate

0.05

0.02

0.00 0.00 0.00 0.00

some dist + all rate

0.16

0.15

0.28

0.19

0.05

0.01

all dist + some rate

0.05

0.20

0.36

0.27

0.00 0.00

some dist + some rate

0.27

0.23

0.37

0.41

0.36

0.05

Figure 13: RNN overfitting issue. Four RNN model with partially

(or no) missing dataset are tested on the same sequences.

the RNN’s training set contains all channels and bit rates.

However, significantly outperforms the RNN if the RNN is

not trained for the specific channel and bit rate. Specifically,

𝜇-Link can improve the data rate and reduce the bit errors

to achieve 5 - 10 bps with 0.2% - 5% BER. Compared to the

state-of-the-art experimental results reported in the RNN

paper [18], 𝜇-Link achieves 2.5× higher bit rate for the same

BER or 20× lower BER for the same bit rate without the need

to train and use deep neural networks.

6.3 Microbenchmarks
In this section, we present two microbenchmarks that give

us insight into the importance of addressing the two new

characteristics of MC channels presented in this paper. Fig-

ure 14 shows the performance of 𝜇-Link with and without its

design components for addressing non-causal ISI and chan-

nel coherence time. The figure shows three curves: 𝜇-Link

𝜇-Link without CU (Channel Update), 𝜇-Link without NC

(Non-causal ISI) and CU. The figure shows the average BER

versus the bit rate at 50 cm distance between the transmitter

and receiver. At a bit rate of 10 bps, 𝜇-Link achieves a BER of

5%. However, this BER degrades to 22% if we do not track and

update the channel and further to 29% if we do not account

for non-causal ISI. This shows why past work that does not

incorporate such insights remains limited in achievable bit

rate to less than 4 bps.

Fig.15 shows the performance of 𝜇-Link as function of the

frequency of tracking and updating the channel, i.e. parame-

ter𝑇 in Alg. 1. The figure shows that the more frequently we

update the channel (smaller update interval𝑇 ), the lower the

BER. This is particularly important for higher bit rates where

the symbol interval is smaller. There, the contribution of ISI

to many symbols becomes more prominent and having good

estimates of the channel impulse response is necessary to

ensure reliable decoding. For example, at 10 bps, where the

delay spread (ISI) spans 12 symbols, updating the channel

every 10 bits yields a BER of 5% which increases to 18.6% if

we update it every 50 bits. Hence, channel coherence time

is of the same order as the delay spread which presents a
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bottleneck for improving the bit rate in MC channels. By

tracking the channel, 𝜇-Link is able to significantly improve

the BER for higher bit rates.

7 RELATEDWORK
In this section, we present further background and related

work on molecular communication. As mentioned before,

for a thorough literature review, we refer the reader to the

following surveys [4, 20, 34].

A. MC Channel Modeling and Estimation: There has

been a significant amount of work on modeling the MC chan-

nel taking into account different factors such as propagation

environment, dimensions (1D, 2D, 3D), external influences

like turbulence and advection, mobility, and type of receiver

(destructive vs non-destructive) [15, 16, 47, 59, 65, 68]. Time

varying channel due to mobility is also modeled in [11, 62].

However, the models do not account for other time varying

factors such as unstable advection that can be caused by

pumping. A number of papers also focus on estimating the

channel parameters such as distance, diffusion coefficient

and fitting them to to a known model or closed-form expres-

sion [27, 46, 58]. Unfortunately, all these works are based

on simulations and none of them are validated in practice.

While modeling provides valuable insights, it cannot account

for all factors and parameters that can influence the channel

in practice as shown in [60]. In this paper, we use theoretical

models and empirical experimentation to guide our under-

standing of the channel and introduce new characteristics.

However, for decoding, we do not attempt to parameter fit

our estimate to a closed form model but rather directly esti-

mate the channel impulse response.



B.MCChannel Capacity: There has been theoretical work
on studying the capacity of molecular communication [6, 7,

36, 37, 49]. However, to derive the capacity of the channel,

these works must make simplifying assumptions that do

not hold in practice. [36, 37] derive the MC channel with

mobile transmitter or receiver but completely ignore ISI.

[6, 7] consider signal dependent noise but assume a static

channel. [49] considers signal dependent noise and ISI but

assumes propagation through diffusion only. None account

for non-causal ISI. Deriving the capacity is, indeed, valuable

for understanding the data rate limits of MC. However, the

channels tend to be significantly more complex in practice.

C.MCDecoders (Simulations): Several MC decoders have

been introduced and tested using simulations. Some exploit

specific features of the MC channel response like mono-

tonicity and local convexity [35, 67] but assume minimal ISI.

Others introduce optimal decoders [31, 42, 45] but assume

the channel impulse response is perfectly known a priori.

[29] introduced a non-coherent decoder using blind channel

estimation but it treats ISI as noise. These decoder are tested

only in simulations and underestimated the severity of ISI in

practice especially as we go to shorter symbols (higher data

rates). Furthermore, they do not address non-causal ISI and

the long delay spread vs. coherence time.

Some theoretical work tries to address the severity of

forward-ISI in MC channel using mechanisms to reduce

the tail of the channel impulse response. Some propose us-

ing enzymes or photolysis reactions to remove interfering

molecules retained in the channel [13, 44] while others pro-

pose using magnetic molecules and adding an external mag-

netic field [63, 64]. These methods, however, have not been

tested in practice and can only reduce forward-ISI but not

eliminate it. 𝜇-Link, on the other hand, aims to decode in the

presence of both forward and backward ISI.

D. MC Experimental Work: Unlike theoretical and sim-

ulation based past work, there are very few experimental

MC testbeds especially in liquids. Most MC testbeds are for

airborne molecular communication where the molecules are

released in air [25, 32, 33, 39, 48, 50]. The dynamics of molec-

ular propagation in such gaseous mediums tend to be signif-

icantly different than liquids. The applications of airborne

MC also tend to be limited since wireless RF works really

well in air. In this paper, we focus on liquid-based molecular

communication for which very few testbeds exist [19, 24, 60].

All testbeds use water as the liquid. For molecules, they use

magnetic particles [60], RNA [24] and acid/base [19]. [24, 60]

focus on channel modeling and fitting and do provide an

evaluation of data rate or BER. [60] uses a symbol interval 4s

corresponding to 0.25 bps data rate whereas [24] does not

report symbol interval or data rate.

The closest to our work is [19] which uses deep neural

network techniques including LSTM RNN to decode with-

out explicitly modeling or estimating the channel. While

it achieves good performance, it relies heavily on tedious

training for every distance, channel, and bit rate. Hence, it

suffers from overfitting as we have show in section 6 and

cannot deal with new channels and new bit rates that it has

not seen before. 𝜇-Link, on the other hand, is able to achieve

better performance by properly modeling the characteristics

of the MC channel without relying on neural networks.

8 LIMITATIONS & FUTUREWORK
This paper only takes the first steps towards better under-

standing of the molecular communication channel. We be-

lieve the paper provides valuable insights that are driven by

theoretical models, simulations, and experimentation. How-

ever, the empirical validation of these insights is limited to

our testbed. Further experimental research is required which

will enable more accurate channel models and new insights.

In this section, we outline some of the limitations of the

current system and future directions for this project.

• In-Vitro Testbed: The current testbed is limited. In par-

ticular, a more elaborate network of tubes, connections,

and pumps that better resemble the circulatory system

should be adopted. Moreover, testing on different types

of molecules, receivers, and fluids, other than water, with

different diffusion coefficients should be conducted.

• Linearity: While both theoretical and empirical results

show that the MC channel is linear, the linearity of the

sampled MC signal itself largely depends on the choice of

receiver. In our testbed, we make sure that all our received

signals fall in the linear range of the EC meter. However,

this linearity might not be guaranteed for all types of

molecules and corresponding receivers.

• Modulation & Coding: In this paper, we only consider

OOKmodulationwithout any coding since ourmain goal is

to understand the MC channel. Further research is needed

to explore different modulation and coding schemes that

could enhance the performance of MC.

• In-Vivo Experiments: A future goal of this work is to

validate the channel model in-vivo thought animal test-

ing for micro-implants and micro-fluids in wet-labs. Such

experiments might reveal new and different challenges in

MC that would require further research.

• Mobility: The insights and system developed in this pa-

per only applies to static transceivers. However, in some

applications like targeted drug delivery, the device might

move through the bloodstream resulting in abrupt or hard

to track channel variations. Such changes are not captured

by our system and are left for future work.
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