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Abstract— This paper considers the problem of audio source
separation, where the goal is to isolate a target audio signal
(say Alice’s speech) from a mixture of multiple interfering
signals (e.g., when many people are talking). This problem has
gained renewed interest mainly due to the significant growth
in voice-controlled devices, including robots in homes, offices,
and other public facilities. Although a rich body of work exists
on the core topic of source separation, we find that rotational
motion of the microphones (e.g., a swiveling robot-head) offers
complementary gains. We show that rotating the microphone
array to the optimal orientation can produce desirable “delay
aliasing” between two interferers, causing the two interferers
to appear as one. In general, a mixture of K signals becomes
a mixture of (K — 1) signals, a mathematically concrete gain.
We show that the gain translates well to practice, provided
two rotation-related challenges can be mitigated. This paper is
focused on mitigating these challenges and demonstrating the
end-to-end performance on a fully functional prototype. We
believe that our Rofational Source Separation (RoSS) module
could be plugged into actual robot heads or into other devices
(like Amazon Show) that are also capable of rotation.

I. INTRODUCTION

As speech recognition and conversational Al matures, voice
interactions with robots will become even more popular [1].
Robots in homes, hospitals, restaurants, and airports will
interface with humans, with speech serving as the primary
medium of interaction [2]-[5]. In such scenarios, separating
a user’s voice will be essential, especially when these inter-
actions occur in noisy environments. In signal processing,
this problem is called “source separation,” and has been
studied extensively (e.g. ICA, IVA, Adaptive Beamforming)
[6]-[13]; today’s results are impressive, to the extent that K
source signals can be separated using M microphones, even
when K is slightly larger than M [14]-[18]. Observe that this
K>M problem is particularly challenging not only because
the K signals are unknown, but because the K propagation
channels — over which the signals arrive to the microphones
— are unknown as well. Hence, this problem is specifically
called under-determined blind source separation (UBSS).

A rich body of work has concentrated on UBSS, and state of
the art (SOTA) algorithms range from unsupervised methods
(e.g., Nonlinear beamformers, Kernels) and speech specific
techniques (e.g., DUET, Bayesian-DUET), to compressed
sensing and supervised deep learning approaches [14], [16],
[18]-[21]. However, majority of past work must rely on
interpolations and regressions since some source information
is lost in the (under-determined) mixing process. Therefore,
performance degrades, understandably, as K increases for a

All authors are with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA {hseol7, sahilb5,croy}@illinois.edu

fixed M. Said differently, any reduction in the (K — M) gap
can directly improve the quality of source separation.

This paper proposes to utilize robotic rotation to spatially
alias interferers, thereby reducing the (K — M) gap. The core
idea is simple. Observe that signals arriving from different
angles 6; produce relative delays ¢; at the microphone array.
Rotation of the array causes these relative delays to change
non-linearly, offering the opportunity to “move” the sources
in this relative-delay space. When the microphone rotates to
bisect two sources — such as in Fig. 1 where the line joining
the microphones bisects the sources A and B — the relative
delays of the bisected sources become identical. Hence, in the
relative-delay space, K sources manifest as (K — 1) sources.
This implies that the scenario in Fig. 1, which was originally
an under-determined [K'=3, M=2] system, has now become
determined with [K=2, M=2]. Even when K > M + 1, the
reduction from K to (K — 1) offers concrete improvements,
both in source separation and localization.

Interferer A

Interferer B

Fig. 1. Rotation of the microphone array to the correct orientation (that
bisects the sources A and B) produces a desired “aliasing” in relative delay.

Realizing the above idea presents 2 challenges:

1) Since the angle of arrivals (AoA) of the K signals are
not known, the correct microphone orientation 6* is
unknown as well. Estimating all K AoAs is difficult
with M (< K) microphones [22]-[26], and worse, AoA
estimates are plagued by front-back ambiguities (i.e., it
is difficult to tell whether a signal is arriving from a
direction 6 in front, or —6 from the back).

2) Even if the K AoAs are estimated, it is not clear which
interferers should be bisected to maximize performance.

There are (K; 1) candidate pairs to bisect, and not all of

them help equally in separating the given target signal.

This paper addresses these two problems in Section III

through a mobility-guided algorithm that first estimates the

source AoAs and, based on the AoAs, decides on the optimal
microphone orientation. Once rotated to this orientation, the
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Fig. 2. (a) 2-microphone array faced with 3 sources resulting in a UBSS problem. (b) Rotation causes interferers to arrive over the same absolute AoA

angle (67 and —67). (c) The steering vector for interferers get aliased (or aligned), resulting in a determined system.

recorded signal is fed to a source separation (SS) algorithm.
Our proposed RoSS module is complementary, hence com-
patible, with most SS algorithms.

We implement RoSS on a rotating microphone prototype,
and perform experiments in simulated and uncontrolled
(indoor/outdoor) environments (Section IV). Results’ show
that RoSS achieve around 10-to-15dB of scale-invariant
signal distortion ratio (SI-SDR) [27], consistently outper-
forming existing UBSS/BSS methods by upto 6dB in various
scenarios. We believe RoSS could also be effective with
smartphones, earbuds, moving video-conference systems,
and surveillance cameras, all of which have limited number
of microphones but contain actuators or inertial measurement
units (IMUs) for angular rotation and sensing.

II. FORMULATION AND OPPORTUNITY
A. Signal Model

Let Sp(t),Sa(t),Sp(t) be 3 source signals, of which Sy
is the target and others are interference (Fig. 2(a)). A linear
2-microphone array receives the mixture of these signals as
X1(t) and X5(t) and we designate X;(t) as the reference
for relative delay calculations. The signals travel from the
far-field over AoAs 0 (k=T,A,B). We explain our proposed
method with K = 3 signals and consider K > 3 later.

We make the following Assumptions:

(A1) The sound sources are human speech, widely assumed
to be mutually independent, non-Gaussian signals.

(A2) Once a speech has been separated, it is possible to tell if
it is from the target user (i.e., a voice fingerprint is available).
(A3) Sources are not moving in the time scale of seconds.

Thus, the received (convolutive) signal mixture is:

Xit)= > Sut),Xa(t)= D Sult+m) (D)
ke{T,A,B} ke{T,A,B}
where 7, = %cos(@k), (k=T,A,B), are time-difference-

of-arrivals (TDOPA) between the microphones (also called
relative delay), while v, and d denote velocity-of-sound and
distance-between-microphones, respectively.

Thus, in the time-frequency domain(time index omitted):
X(f) = ar(Hsr(f) +@alHSalf) +as(H)Ss(f) @)

TMore results and demos : https://uiuc-ss.github.io/RoSS

which in the matrix form can be written as:
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Here @, = [1 exp(j27 fr1.)]7 (k=T,A,B) is the steering vector.
Note that even if all @y s are known, the system is still under-
determined.

B. Interference Alignment

What if we rotate the array such that the line joining the
microphones bisect the two interferers? While the correct
rotation angle needs to be inferred blindly, for now let us
assume we know it. Fig.2(b) shows the outcome. Since the
new AoAs of the two interferers are now 0y and —0;, their
corresponding TDOAs become equal, or aliased, as follows:
/ d !
T = —cos(0r) = —cos(—0;) = 15
Up Up
Thus, in frequency domain, interferers A and B have identical
array vectors @;(f) = [1 exp(j2rfrr)]T where 77 = 7y =
75,. Hence, the new measurement vector X'(f) is:

[Xli(f)]: a"T al {

This expression means that the array would sense two groups
of signals, not three; one is the target and the other is the sum
of two interferers. Fig. 2(c) shows these two signals arriving
from distinct angles. This produces a determined system of
equations except that one of the mixed signals arriving from
AoA @y is actually a sum of independent sources. If this
sum (Sa(f) + Sp(f)) remains independent of the target
signal S7(f) (as shown next), we can apply classical source
separation.

St(f)
Sa(f)+ SB<f>} @

C. Sum of Mutually Independence Sources

We briefly show that a mixture of two independent sources
remains independent from the third source when all three
are mutually independent. Define A, B and T as mutually
independent continuous random variables, and J = A+ B
is a fourth random variable. Let F;(-) and f;(-) be cumula-
tive distribution function (CDF) and probability distribution
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function (PDF) of variable i, respectively. Then, the joint
distribution of 7" and J can be written as:

Fyr(j,t) =P(A+ B <jT<t)
=[P(A+B<j,T<tl|A=a)fa(a)da
= [P(B<j—a,T <t)fala)da 5)
— [P(B<j—a)fala)da- P(T <t)
— P(A+ B <) P(T < t) = F;(j)Fr(t)
Therefore, J and T' are also mutually independent [28].

III. ROSS: AOA ESTIMATION AND OPTIMAL BISECTION

Our end-goal now is to rotate the microphone so that the
correct interferer-pair gets aligned. For this, we first need to
estimate all the AoAs, and using the AoAs, determine the
optimal interferer-pair that must be bisected.

A. Estimating AoAs in Under-determined Scenarios

Estimating K AoAs with M < K microphones is known to
be a hard problem for general signals. However, literature has
shown promise with speech signals, due to what is known as
the W-Disjoint Orthogonality (WDO) property [14]. Briefly,
extensive experiments have shown that speech from two
humans have a low probability of collision in a given time-
frequency (TF) bin. Thus, if one calculates the TDOA for
each TF bin — called inter-microphone time difference (ITD)
— one can extract information about AoAs. Fig. 3 illustrates
this with a toy example of red and blue signals; the calculated
ITDs from the red and blue TF bins form 2 clusters. The
means of these clusters partly reveals the red/blue signal’s

AoA.
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Fig. 3. ITD computed from TF bins produce 2 clusters around two mean
ITDs. These mean ITDs are estimates of AoA.

Unfortunately, the mapping between ITD and AoA is not 1:1
because AoAs of both 6 and —6 produce identical ITDs at
the microphone array. Said differently, ITD is calculated as
0 = vicos(ﬁk) and both 6, or —6j produce the same ITD.
Fig. 4 shows how 2 ITD clusters map to 4 candidate AoAs
(of which 2 AoAs are spurious). This is classically known as
the front back ambiguity. Worse, if the true AoA’s happen to
be 61 = —05, then it becomes difficult to even recognize the
presence of 2 signals. Rotating the microphone array to the
correct orientation 6%, ,, would obviously require to resolve
this ambiguity problem first.

d b
HisEme §=_"cos(6) (0)

A | 1 I [ f
_/f \.\ \ ,‘I I‘.\ [ | | ‘\
50 & %% “gg,006, 6,

Fig. 4. 2 ITD clusters gets mapped to 4 clusters in (—m, ] AoA space.
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B. Rotation-enabled AoA Disambiguation

We propose to disambiguate AoA using rotation of the
microphone array. The idea is simple — as the array rotates,
the ITD will change and the direction of this change (higher
or lower) should reveal the true AoA. Fig. 5(a) illustrates
this with a single-source example, where candidate AoAs
are 0 or —0;. Fig. 5(b) plots this ITD on a graph with
the X-axis showing the rotation angle of the array. Since the
microphone has not made any rotation yet, the ITD is plotted
for 6,.,; = 0. As the array rotates counter-clockwise, the ITD
should change in one of two ways: if the true AoA = 6y,
then the ITD should increase, while for AoA= —#@y, the
ITD should decrease (Figure 5(d)). Moreover, the trajectory
of change should follow the Cosine curve since the ITD
is a function of Cos(f). Thus, in theory, even one small
rotation should disambiguate and give us the true AoA.
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Fig. 5. (a) Ambiguous AoAs in a static scenario, (b) Measured ITD without
rotation, (c) Counter-clockwise array rotation, (d) ITD trajectory is Cosine
shaped, and the direction reveals the true AoA

Rotation-based disambiguation should be generalizable to K
sources. Instead of one ITD value, we now have K ITD
values at 0,.,; = 0. With rotation of the array, each ITD value
would move in one of two trajectories — upward Cosine or
downward Cosine, as shown in Figure 6 for K = 3. One
should be able to fit K distinct Cosine functions through
all the ITD trajectories, thereby extracting the K = 3 true
AoAs from 6 candidates.

In practice, disambiguation is far more challenging because
the ITD values become noisy. Several reasons contribute:

(1) Background interference arrives from different angles
polluting the ITD clusters shown in Figure 4(a). Reverbera-
tions add to this pollution.
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Fig. 7. ITD measurements with K = 4 sources for consecutive microphone
rotation, performed in a real indoor environment with background noise and
reverberation.

(2) With increasing number of sources, K > 3, the WDO
property begins to break down, meaning that sources begin
to collide with higher probability in time-frequency bins.
Collisions produce incorrect ITD values, shifting the peaks
in Figure 4(a).

(3) There is no guarantee that all K ITD peak values would
be prominent at every step of rotation; a source pair may
have similar (or identical) ITD values, say when their AoAs
are 30° and -30°. This smudges the ITD estimates at that
rotational step.

(4) Finally, the ITD does not vary linearly with every step
of array rotation. The ITD variation is large when 6 is near
90° and small when 6 is 0° (note that the %2(9) is zero
when 6 = 0). This implies that ITD noise must be treated
differently for different regimes of 6.

Figure 7 shows measurements from a real indoor scenario
where the microphone array is rotated 8 steps, with 20° per
step. The smudged ITDs are from K = 4 different sources,
implying that we have 8 candidate AoAs to disambiguate.
Said differently, 4 Cosine functions need to be fitted to the
measured data, essentially making it a problem in regression.

C. Statistical Approach

Our proposed solution can be intuitively summarized as
follows. We compute a likelihood for all AoAs based on
the initial ITD measurements. Then, for every rotation of
001, we model the expected ITD for each AoA and match it
against the new measurement — this gives us an updated like-
lihood per AoA. With more rotational steps, the likelihood
of the true AoAs begin to show sharper peaks, while the
ambiguous and the incorrect AoAs die down. We normalize
the per-AoA-likelihood and call it the “AoA spectrum” —
Figure 8 plots real AoA spectrums after each rotation of the
array. The peaks in the AoA spectrum sharpen gradually and
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Fig. 8. As microphone takes more rotational measurements, peaks near
truth AoAs (dotted red) get clearer, offering better AoA detection.

after several rotations, converge to the K = 4 correct peaks.
Mathematically, our algorithm can be specified in 3 essential
steps as follows:

Step 1: At each rotation angle Giz)t, (r=0,1,...,R), use

the ITD histogram to estimate probability density function
(PDF) as: p(6(")). Normalize the PDF to not penalize the
ITDs that are absent.

Step 2: Calculate likelihood for each AoA, 6., at the r-th
rotation as: L") (0,,..) = ﬁ(%COS(asrc — o).

rot
Step 3: Compute overall likelihood across R rotations
[y L™ (0src) with normalization. Identify 6y,.. values
that do not change more than € for 3 consecutive rotations;
announce these as the K source AoAs.

D. Optimal Bisection Angle for Source Separation

Once AoAs are estimated, RoSS needs to rotate the micro-
phone array to bisect two interferers. Given K —1 interferers,
there are (*,') candidate pairs. Which pair should RoSS
bisect?

To answer this question, we need to establish two insights:
(1) A target signal can be perfectly isolated when its ITD
distribution (as shown in Figure 3) does not overlap with
any of the interferer’s ITD distributions.

(2) Rotation of the microphone array produces unequal
shifts in the ITD distributions. This is because the ITD is
proportional to C'os(AoA), hence for a given rotation, AoAs
near 0 or 180° experience smaller ITD shifts, compared to
Ao0As near 90 or 270°.

Given these 2 facts, the optimal rotation becomes the follow-
ing optimization question: what final orientation angle 6%,,, ,,
maximizes the minimum ITD separation between the target
and the interferers? The formal optimization is as follows:

)

[ — in |0p — 6 6
final argintax mng| T — Ok (6)

Here 67 is the mean ITD for the target signal (T') and dy,
is the mean ITD of each interferer. Barring some rare cases,
0%inq 1s indeed an angle that bisects a pair of interferers



(we omit the proof in the interest of space). Hence, the above
optimization needs to search only across the (K; 1) bisection
angles, as opposed to all possible 6,.,;.

Isolating Any Given Target: In conclusion, given a mixture
of K sources, and a target signal T' for isolation, RoSS
rotates to the 0%, ,, orientation. The target signal 7" can be
specified either by its AoA (e.g., a robot sees a person in its
camera view and isolates that person’s voice), or the target
signal’s voice fingerprint may be given to the robot, in which
case it checks which voice signal matches the fingerprint.
Once the fingerprint matches, RoSS continues to track that
AoA and isolate that voice signal.

Delay: Note that if sources come and go, the problem is
easier because K is smaller at any given time. However, if
K sources are continuously present, RoSS has the time to
rotate and resolve them. Once AoAs are known once, rotation
to 0%, is fast, hence, any given source can be separated
so long as they are not moving fast.

IV. EVALUATION
A. Experimental Settings

Measurements: RoSS is implemented on a custom-built
rotary platform actuated by a NEMA-17 stepper motor (Fig.
9(a)). The open-loop motor uses a TB-6600 driver with peak
rotation speed and acceleration of 225 deg/s and 112.5
deg/s®. A ReSpeaker microphone array [29] connected to
a Raspberry Pi is mounted on the rotary platform and 2
adjacent microphones, with 5¢m spacing, are used to record
audio signals. Rotations are performed in 20° increments.
The Table I lists some of the environmental parameters.
In each environment, K speech signals were played from
loud speakers placed radially around the microphone, at
distances between 2 to 2.5m. Each signal is 1-minute-
long male/female voice recordings randomly selected out of
11 independent speakers, drawn from the LibriTTS dataset
[30] where signal powers are almost identical, i.e., STR =~
—10log(K —1) for K-sources. Multiple runs were performed
per configuration, with various mixtures of voices (males,
females, and mixed genders), K € [3,4], and K AoA angles
chosen uniform randomly between [0,360]. Fig. 9(b,c,d)
show example images from our experiment sites.
TABLE 1
EVALUATION ENVIRONMENTS

Settings [ Location SNR [dB] Room size [m X m]
Lab Indoor Lab 22 ~ 8.4 x 8.2
Room Indoor Room 23 ~ 6 X8
Park Outdoor Park 15.4 > 20 x 20
Sim Simulation 15 10 x 10

The audio recordings are sampled at 16kHz, with STFT
frame lengths of 512 or 1024 with 25% overlap with adjacent
frames. For comparison, we use three popular source sep-
aration algorithms, namely natural gradient-based IVA [7],
DUET [14] and MVDR [8].

Simulation: To test RoSS over a wider range of parameters,
we simulate the microphone recordings using a room impulse
response (RIR) generator [31]. The convolutive mixtures

Microphone Pair |

Stepper Moto‘

"

Microcontroller

7

(a) Custom-built rotary platform with ReSpeaker micro-
phone array. (b) Laboratory. (c) Conference room. (d) Local park.

Fig. 9.

from K sources are denoted X;(t), Xo(t). The key param-
eters of the simulations are:

e Room size: 10m x 10m (2-dimensional space assumed)
with reverberation time Tgy of 0, 450, 700 ms.

e Two omni-directional microphones with 5¢m spacing are
located in the room-center, rotating around their center.

e Gaussian noise is added so that microphone SNR is 15 dB
while maintaining SIR of -10log(K-1) dB

e Separated sources are evaluated by comparing with each
source alone measured at the reference microphone X (¢).
e Algorithm settings are similar to the measurement settings
except for 24kHz sampling frequency.

B. Performance Metric

AoA Error: Once the AoA estimate 6 is available, the AoA
error is the smaller angular difference between the ground
truth AoA 6* and the 6. However, recall that AoA ambiguity
exists, meaning 2K AoA candidates appear for K true AoAs.
In such settings, we calculate the AoA error as follows. We
create K buckets, one for each true AoA. A candidate AoA
is assigned to bucket j if that candidate is angularly closest
to the j'* true AoA. The average AoA error per bucket is
then computed — this gives us K AoA errors. If a bucket has
no AoA, we assign a maximum possible error as a penalty.
Source Separation: Once a source has been separated
as § from a mixture m, we report SI-SDR and SI-SDR
improvement [27], [32] defined as:

SI-SDRi = SI-SDR(8, s) — SI-SDR(m, s)
Here s is the source signal recorded at the microphone
without any interference; this serves as ground truth.

C. Results

Comparison between RoSS and Existing Algorithms: Fig.
11 compares RoSS’s source separation performance with
SOTA algorithms, IVA and DUET. The X-axis shows the
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Fig. 11.  Source separation performance with different initial

orientation of the microphone array, showing non-uniform patterns.

initial orientation of the microphone array — understandably,
IVA and DUET’s performance vary as a function of this
initial orientation. The solid lines show their median per-
formance over 50 different configurations, while the light-
color bands are [80,20] percentiles. Since RoSS rotates to
the optimal orientation, its performance remains consistent
(and matches IVA when the initial orientation is luckily the
optimal). With K = 3 sources, IVA outperforms DUET
when the array orientation is favorable to it, but for other
orientations (and when the sources increase to K = 4),
DUET gains due to the inherent WDO property of speech.
The yellow shaded area depicts the overall gain from RoSS,
which is essentially the value of microphone rotation. Since
RoSS is complementary to IVA, DUET, and other algorithms,
this gain should be always available.

AoA Estimation: Fig. 10 plots the reduction of AoA
error against rotation, where each rotation-step is ~ 1.6
seconds. Each graph shows the average AoA error across
all experiments in a given setting (Lab, Room, Park, Sim);
the error bars denote standard deviations. As RoSS rotates
the microphones, the AoA error reliably converges to the
true AoA angle. Simulation and outdoor settings converge
faster and more accurately, mainly due to lower reverbera-
tion, compared to indoor labs and rooms. Importantly, AoA
estimation is a by-product of RoSS and can be leveraged
as an independent capability in other applications, such as
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. 10.  Average AoA estimation error over consecutive rotational steps in various locations and configurations. Error bars show standard deviations.
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Fig. 12. Average SI-SDR/SI-SDRI of (a) various algorithms, in (b)
different setups where X markers are AoA-informed RoSS.

localization, imaging, and radar-based perception.

Parameterized Simulations: Fig. 12(a) shows how SI-SDR
degrades with increasing K but RoSS continues to outper-
form others. Informed RoSS is a variant of RoSS where
the AoAs are accurately known, such as in audio-visual sys-
tems [33], [34] — the gains are slight, implying RoSS’s AoA
estimation is reliable. Fig. 12(b) plots SI-SDR against vary-
ing reverberation levels — the indoor setting exhibiting the
highest reverberation. Performance understandably degrades
with reverberation and larger K since AoA errors and TF-
collisions are both high. Performance sometimes degrades
outdoors from strong winds and background noise, however
such degradation affect all source separation methods.

V. CONCLUSION AND FUTURE WORK

We show that microphone rotation ushers an opportunity in
audio AoA estimation and source separation, especially in
under-determined settings. We demonstrate that optimal rota-
tion can align/alias two interferers in the delay space, making
them appear as one. This alignment is complementary to
existing algorithms, offering promising results in simulations
and real reverberant environments.

Further improvements are possible in at least 2 directions:
(1) an adaptive rotation policy that converges faster, ideally
within a few spoken words, and (2) updating the algorithm
to circular microphone arrays. We leave these to future work.
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