
Aggregation in Sensor Networks: Optimally Trading Information for Energy

Jen Burge Kamesh Munagala
Department of Computer Science

Duke University
jen,kamesh@cs.duke.edu

Romit Roy Choudhury
Dept. of Electrical Engineering

Duke University
romit@ee.duke.edu

Abstract

In this paper, we consider algorithmic issues in employ-
ing lossy compression in order to extend the lifetime of
wireless sensor networks. We consider two metrics which
trade-off with each other: the communication and compu-
tation cost on one hand, and the information loss from lossy
compression on the other. We consider the particular set-
ting where the lossy compression scheme is simple averag-
ing. This compression scheme leads to lower computation
cost at a node compared to expensive loss-less compression
schemes, and in addition saves on the communication cost.
However, such a scheme also loses significant information,
and must only be employed when node values are highly
correlated.

We study the problem of deciding the appropriate com-
bination of loss-less and lossy compression schemes to im-
plement along an aggregation tree. The goal is to opti-
mize information loss given a budget on the communication
and computation costs. Our algorithmic framework is fairly
general and handles various types of cost functions and in-
formation loss measures. We perform extensive empirical
studies to validate the need for such an algorithmic frame-
work when network lifetime is highly constrained.

1. Introduction

Sensor networks are becoming increasingly useful for
monitoring and studying a wide variety of physical phe-
nomena. Wireless networks of sensors allow researchers
to take measurements over large spatial and temporal scales
without disturbing the surrounding environment. One im-
portant limitation of a sensor network is the battery life of
the sensors, and frequent visits to the site to change batter-
ies are often impractical. Therefore one of the major goals
in sensor networks research is increasing energy efficiency
in order to extend the lifetime of networks.

Physical phenomena such as temperature, humidity, or
light are inherently continuous and therefore exhibit a high

degree of spatial correlation. This correlation can be ex-
ploited to save energy by reducing the transmission of re-
dundant information. The method of choice is to allow
nodes in the network to compress information they have
received before sending it on using some lossless com-
pression scheme, such as Lempel-Ziv or distributed source
coding[12, 10]. This strategy trades off computation with
communication by reducing the size of the message that
needs to be sent. Usually a node will spend several orders of
magnitude less energy on computation than on communica-
tion, so this technique is able to save a significant amount of
energy if the data from different sources is correlated. Com-
pression saves communication cost all along the path to the
base, as each node has a smaller message to transmit.

However, compression is limited in its potential for en-
ergy savings. Loss-less compression is one end of a spec-
trum, which preserves all of the information but has the
highest communication cost of any aggregation scheme.
The other end of the spectrum uses lossy compression (such
as averaging) at every node in the network, which mini-
mizes the communication cost but loses the most informa-
tion. If the network is nearing the end of its lifetime, loss-
less compression may not save enough energy to extend the
network’s lifetime to the desired length. If we are willing to
tolerate inaccuracies, then lossy compression, or aggrega-
tion, has the potential to save more communication. Aver-
aging the values in a subtree reduces the size of the message
to approximately the size of the data from just one source,
independent of the original size of the message. If the nodes
are highly correlated, this will lose less information. Aver-
aging also has a much smaller computation cost than any
loss-less compression scheme.

Another scenario where aggregation is important is a
group of highly correlated nodes connected to the rest of
the network by some edge which has a high communication
cost. An edge may be expensive in terms of communica-
tion cost for a number of reasons: The two endpoints of the
edge may be at a large geographic distance from each other,
requiring the sender to use a lot of energy just so the mes-
sage will reach the receiver. Even if the nodes are relatively

vw

v

u

t

s

Figure 1. An expensive edge may require ag-
gregation to reduce high-cost communica-
tion.

close together, they still may have an expensive edge be-
tween them. For instance, if the transmitting node has little
battery life remaining, it may not have enough power to reli-
ably reach the receiver, resulting in a lot of retransmissions.
Avoiding a lot of such transmissions is necessary in order to
keep the network connected longer. As another instance, an
edge could be expensive if there is some physical obstruc-
tion between the two nodes which causes more messages to
fail and require retransmission. In any of these scenarios,
we must carefully manage the communication across this
edge in order to prevent these nodes from getting discon-
nected from the network.

Consider the example depicted in Figure 1. There is
a small group of nodes very close together, and therefore
very highly correlated. The parent ofw in the communi-
cation tree,x, is connected by an expensive edge, because
the battery life ofw is very low. By averaging the values
from s, t, u, v, and w, we can reduce the communication
cost on this expensive edge by1/5 over forwarding, with
only a small loss of information. Loss-less compression is
unlikely to achieve as large a reduction, and is more expen-
sive computationally than averaging. Sending the average
will allow nodew to use less energy and stay alive longer,
preventings, t, u, andv from becoming disconnected and
useless.

We consider combining lossless compression with lossy
compression in order to maximize the lifetime of a densely
deployed sensor network measuring some continuous phys-
ical phenomenon. Our goal is to provide a systematic ap-
proach that trades off communication cost with information
loss. Given a set of sensors, a communication tree rooted at
a base station, and a communication cost budget, we find the
appropriate action from{compress, average, forward}
for each node, such that the total communication cost is less
than the budget and the information loss is minimized. Ex-
amples of strategies are illustrated in Figures 6,7, and 8.
The communication cost budget is determined based on the
current battery life of the sensors and the desired lifetime
of the network. We will describe our algorithm in the set-

ting where all nodes start with the same battery life, but it is
easily adapted to the case of heterogeneous battery lives by
assigning appropriate weights to the nodes, as explained in
Section 3.5.

Our contributions include

• A model for measuring information loss.

• A dynamic programming algorithm that finds the op-
timal locations for compression and aggregation for a
given network and communication cost budget.

• A distributed implementation of the algorithm.

• An experimental evaluation of the effects of compu-
tation cost, correlation, communication tree and com-
munication cost on the information/energy tradeoff.

1.1. Related Work

Energy efficiency in sensor networks is a very active area
of research, mainly focussing on communication cost where
most energy savings are possible. Our effort integrates com-
putation cost and information loss into this research direc-
tion. Though both loss-less and lossy compression schemes
have been employed before in this context, the optimal com-
bination of the two schemes has not been looked at previ-
ously. Though lossy aggregation schemes such as averaging
have been studied previously [3, 8, 9], this has been mostly
in the context of implementing aggregate queries over a net-
work. This work has therefore ignored the aspect of infor-
mation loss which occurs if the average is viewed as an ap-
proximate representation of the actual values.

Previous work [7, 11] has considered different in-
network loss-less compression techniques, and other
work[13, 10] has considered the interaction of such com-
pression with routing. Pattemet al [10] analyze the inter-
action between correlation and the routing/compression al-
gorithms, and show that shortest path trees with opportunis-
tic compression are nearly optimal for a wide range of cor-
relation parameters. Though the overarching question we
address still concerns how correlation effects routing, we
differ in several regards: First, unlike the hop count metric
used in [10], we consider vastly more general cost metrics
that take into account the effect of edge lengths on power re-
quirements, as well as battery life and obstacles. Such a cost
metric would now be unrelated to the correlation structure
in the nodes, which leads to different optimal routing algo-
rithms. Second, our problem formulation takes into account
lossy compression schemes and the associated information
loss, as well as the computation cost for the compress and
decompress operations.

The idea of giving up accuracy to save energy has been
explored before by modeling the underlying process gen-
erating the sensor values and only sending the values that

differ too much from the predictions[1, 14]. Our work can
be thought of as asking a higher level question: Given any
such lossy compression scheme, what are the optimal places
in the network for implementing these schemes.

We finally note that a line of work[4, 6] has addressed
the problem of optimal placement of sensor nodes given a
spatial correlation model. We use the same Gaussian corre-
lation model to motivate our problem statement and develop
tractable information loss measures. However, our main fo-
cus is on optimal placement of compression schemes given
a routing tree, and not in sensor node placement, which we
assume is given.

1.2. Outline of the Paper

The paper is organized as follows. Section 2 discusses
possible methods for estimating the various parameters
needed by the algorithm, including communication cost,
computation cost and information loss. Section 3 describes
the algorithm and possible generalizations and improve-
ments. Section 4 outlines our experimental evaluation of
the algorithm and parameters, and presents the results.

2. System Model

We are given a set of locationsV where we need to take
or estimate measurements, and sensors are placed at some
subsetW of those locations. We are also given a commu-
nication treeT on the sensor locations inW , rooted at the
base station. Every node in this tree needs to send the data
it collects to the base station. When an interior node in the
tree receives data from its children, it has three options: for-
ward, compress, or aggregate. If the node chooses to com-
press or aggregate, any incoming data that has been com-
pressed must first be uncompressed. Aggregation will pro-
duce the smallest output (the size of one measurement if we
are averaging) but will result in some loss of information.
The aggregation function could be any lossy compression
scheme for which we can estimate the information loss. In
our work we will consider averaging for its simplicity and
robustness.

A solution to this problem is an assignment of forward,
aggregate or compress to each node in the tree, which ad-
heres to our constraints. The goal is to find a solution that
minimizes the total information loss, given some communi-
cation cost budget.

Our algorithm requires some way of estimating com-
munication costs, computation costs and information loss.
Communication and computation costs can be determined
locally by nodes using profiling tools, or estimated using
an appropriate model. Information loss requires a model or
global estimation, since the correlation between every pair

of nodes in the network is needed. Because global estima-
tion would be expensive, the use of an appropriate model
is likely to be the preferred method for estimating informa-
tion loss. We describe a widely accepted model for spatial
correlation in Section 2.2.

2.1. Cost Model

For the purposes of our algorithm, we require a model
for both communication and computation costs. We model
communication cost as a general function of the size of a
message and the distance it travels. We model the computa-
tion cost of compressing and decompressing as functions of
the initial size of the message being compressed or uncom-
pressed.

Communication Cost: The communication cost of a so-
lution is the sum of the communication costs incurred on
each edge. The communication cost on edgee is some func-
tion of the size of the message being transmitted acrosse,
be, and the distance between the endpoints ofe. This func-
tion should provide an accurate estimate of the power re-
quired to transmit the message acrosse, and may be defined
to incorporate occlusion, battery life, the probability offail-
ures and retransmissions, and any other factors effecting the
amount of energy used when transmitting on the edge.

For the purposes of our experiments, we model the com-
munication cost on edgee as the size of the message being
transmitted,be, times the square ofl(e), the length of edge
e. Our algorithm is not dependent on the particular com-
munication cost function. The square of the distance is a
reasonable function because it is reflective of transmission
costs for an outdoor sensor network; for indoor sensor net-
works the cost would increase as the fourth power of the
distance.

COST =
∑

e∈T

bel(e)
2

Computation Cost: The computation costs for com-
pressing and decompressing the values from a set of sensors
could be estimated in three different ways. The costs could
be measured before deployment, estimated by each sensor
whenever it compresses, or predicted using a model.

Sadler and Martonosi[12] showed experimentally that
computation costs are often significantly lower than com-
munication costs, even for expensive loss-less compression
routines. This means it is usually a good idea to spend com-
putation energy on compression if it will reduce the size of
the message at all. However, when the cost of decompress-
ing a nodes inputs in order to compress them all together
is considered, the question of where to compress becomes
more interesting.

For our experiments we use a simple model that assumes
a fixed constant ratio of communication cost to computation

cost for a set of a particular size. We discuss the effects of
varying this ratio in section 4.2

2.2. Correlation Model

Any algorithm requires estimates of the correlations be-
tween nodes in order to calculate the information loss of
averaging a set of sensor readings. Instead of global esti-
mation of the correlation between each pair of sources, a
model of the joint distribution of the sources can be used
to estimate the correlations. The model can also be used to
estimate the compressed size of a set of readings. We will
leave the question of efficient estimation of these parame-
ters for future work, and use a model of the sensors that
is standard in the literature. This model assumes that the
values are drawn from a multivariate Gaussian distribution.
For ann-dimensional Gaussian, each variableX has

P (X = x) =
1

(2π)n/2|Σ|
e−

1

2
(x−µ)T Σ−1(x−µ)

whereΣ is then× n covariance matrix, andµ is the length
n vector of means.

Since we are dealing with a continuous physical phe-
nomena that occurs at all points in space and not just at the
locations where we have placed sensors, we use a general-
ization of the multivariate Gaussian to an infinite number of
variables, called a Gaussian process. A Gaussian process
is specified by a mean functionµ(.) and a kernel function
Σ(., .), which give the mean for any given location and the
covariance between any two locations. The covariance be-
tween the values at locationsu andv is a function of the
distance between them and is given by

Σ(u, v) = σuσve−d(u,v)2/h2

whereh is a constant parameter that is learned from ob-
servations. Our algorithm relies only on this covariance
model, which is independent of the meansµu, µv, so we
setµ(u) = 0 for all nodesu.

2.3. Compression Size

We calculate the compressed size of a set of sourcesS
using the differential entropy of the set,H(S), which mea-
sures the amount of uncorrelated information in the set.
Since the measurements are actually continuous random
variables, the differential entropy could be infinite, so we
need to use the entropy of the discretization of these vari-
ables. If the data is discretized to a precision of∆, the com-
pressed size ofS is approximatelyDE(S) + n log(1/∆).

For a multivariate Gaussian the differential entropy is
given by

DE(S) =
1

2
log((2πe)n detΣ)

whereΣ is the covariance matrix.

2.4. Information Loss

Quantifying the amount of information lost during ag-
gregation is a difficult challenge in our work. There are
two properties we require from an information loss func-
tion f(S), which quantifies the amount of information lost
when aggregating a set of valuesS:

• Non-negativityf(S) ≥ 0 ∀S

• Non-decreasingf(A) ≤ f(S) ∀A ⊆ S

One initial attempt is to use the residual information,
f(S) = H(S|avg(S)), which would quantify the uncer-
tainty left when using the average ofS to try to recoverS.
However, this could be negative, and does not account for
the extra informationS could give us about the entire set of
valuesV thatavg(S) does not give us.

To fix this problem we definedinformation lossas

IL(S) = MI(V \ S, S) − MI(V,avg(S)) (1)

The functionMI(X, Y) is themutual informationbe-
tween two setsX andY , as defined in [2]. This function
is a more robust measure of how well setY can be used to
reconstruct setX , and will always be non-negative. In the
case whereY is just the average ofX , the mutual informa-
tion is given by

MI(X,avg(X)) = DE(X) − DE(X |avg(X)) (2)

The information loss function is only positive whenS is
small in relation toV (note thatMI(V \ S; V) = 0 when
S = V). For this reason we need to use a set of locationsV
to compute information loss which is larger than the set of
all sensor locationsW .

To calculateDE(X |avgX), we use the chain rule of
entropies.

DE(X1, X2, ...Xm|Y) =

m
∑

i=1

DE(Xi|X1...Xi−1, Y) (3)

The differential entropy for a single random variableXi

given a set of other random variablesA is

DE(Xi|A) =
1

2
log(2πe(σ2

Xi
− ΣXiAΣ−1

AAΣT
XiA)) (4)

where ΣXiA is the covariance vector with entries
Cov(Xi, a) for eacha ∈ A, andΣAA is the covariance
matrix restricted to setA.

Using equations (3) and (4) to findDE(X |avgX) re-
quires the computation of the correlations between values

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 10 20 30 40 50 60 70

C
om

m
un

ic
at

io
n

C
os

t

Information Loss

Figure 2. Pareto optimal information
loss/communication cost tradeoff points.
From any point on this graph any decrease
in communication cost requires an increase
in information loss and any decrease in
information loss requires an increase in
communication cost.

in X and the random variableY =
∑m

i=1 Xi/m for the co-
variance vector and covariance matrix. The sum of Gaus-
sian random variables, and therefore also the average, is
Gaussian. The covariance betweenXj andY is given by

Cov

(

Xj ,
1

m

m
∑

i=1

Xi

)

=
1

m

m
∑

i=1

Cov(Xj , Xi) (5)

Equation (5) combined with equations (1) through (4) al-
low us to computeIL(S) using the covariance matrixΣ
described in Section 2.2.

3. Dynamic Programming Algorithm

Recall that we are trying to find a strategy that assigns an
action from{compress, average, forward} to each node,
in order to minimize the information loss while respecting
the communication cost budget. We are trying to compute
the Pareto optimal points shown in Figure 2. These points
can be computed either by fixing a communication cost and
minimizing information loss or fixing an information loss
threshold and minimizing communication cost. Since the
latter is simpler to work with, we will flip around the prob-
lem and minimize communication cost subject to an infor-
mation loss threshold.

The algorithm to compute a strategy for a given network
uses bottom-up dynamic programming, with the table stor-
age distributed across all nodes. Each node will determine
all of the points at which a change in the strategy for its
subtree results in a smaller communication cost with more
information loss. We will call these Pareto optimal points
theinformation loss thresholds. These thresholds are sent to
the parent of the node, which computes its own thresholds.

The algorithm makes the assumption that information loss
across different children is additive. This may be overesti-
mating the information loss, since the values in one subtree
may be used to reconstruct the values in another subtree.
However, if the tree is constructed using some distance-
based method such as minimum spanning tree or shortest
path tree, the sensors in different subtrees will be farther
away and thus likely to be uncorrelated or only weakly cor-
related, so that using values from another subtree may not
help much with reconstruction. Finally, the base station can
compute the set of thresholds for the entire network, which
gives it a list of communication cost values and the associ-
ated minimum information loss. When given a communica-
tion cost budget, the base station looks up the point with the
largest communication cost that falls under the budget and
uses this strategy.

The information loss thresholds are a list of pairs
p1, p2, ...pm, wherepi = (lossi, costi). The list is sorted
in increasing order oflossi and decreasing order ofcosti,
representing places where an increase in information loss
will decrease the communication cost. For pairpi, lossi is
the minimum possible information loss for the correspond-
ing communication cost,costi. There are a finite number of
these pairs since each pair corresponds to a certain strategy,
and the information loss only changes when the set of ag-
gregating nodes changes. Therefore the maximum possible
number of thresholds is2n, wheren is the size ofW , the
set of locations with sensors.
Assumption: We make the assumption that when a node re-
ceives any average values, it cannot perform compression.
This assumption is necessary in order to solve the problem
with dynamic programming. The assumption is reasonable,
because compression of averages from different subtrees is
unlikely to achieve a significant further reduction in size.
The assumption allows us to introduce three cases repre-
senting the three distinct situations that nodev may be in.

• Case A: Some ancestor ofv will aggregate, but no an-
cestor ofv will compress. In this case,v must consider
that the cost of uncompressing will be payed later if it
chooses to compress.

• Case C: Some ancestor ofv will compress. Thenv
must not only consider the uncompress cost but also is
not allowed to aggregate.

• Case N: Every node along the path fromv to the base
station will forward. In this casev is free to choose any
of the three actions and will pay no uncompress cost.

For every casei, a table of information loss thresholds,
T i

v, is computed and stored at each node. These thresholds
enumerate the levels of information loss where the strategy
of the network changes in a way that lowers communication

cost by allowing the loss of more information. A row of the
table is a tuple

〈loss, cost, size, action, t1, t2, ...tdeg(v)〉

wheredeg(v) is the number of childrenv has andtj is the
corresponding threshold for thejth child. After the base
station has computed its tables, the strategy is propagated
down by passing the appropriate case number and along
with tj from the parent to each child, which the child uses
to choose its action.

The leaves of the tree always compress. For cases A and
C, a leaf’s table consists of one threshold with loss 0 and
cost

csize(1) ∗ d(l, p(l))2 + 2 ∗ ccost(1)

wherecsize(1) is the compressed size of a single source,
d(l, p(l)) is the distance from the leaf to its parent, and
ccost(1) is the cost of compressing or uncompressing one
source. For case N the cost of the threshold is only
csize(1) ∗ d(l, p(l))2 + ccost(1).

After computing its tables a node sends them to its par-
ent. When the parent,v, receives the tables of all its chil-
dren, it computes a temporary sum tableSi for each of the
three cases by considering all possible combinations of the
information loss thresholds of its children.Si holds the
combinations of thresholds whenv passes down casei to
its children. The sum tables start with a single entry each,
computed for an imaginary leafv′ with v as its parent (with
d(v′, v) = 0), to account forv’s own measurement. Then
for each childj, each entryT i

v(t) is combined withT i
j (1).

The two thresholds are combined by summing the informa-
tion loss, communication cost, and size, and adding1 to the
end of splitT i

v(t). Then for each additional entryT i
j (u) a

new threshold is created by combiningT i
v(t) with T i

j (u).
Nodev uses the sum tables to compute thresholds for

its own tables. Each table is stored in increasing order of
information loss (the first threshold will always have zero
information loss). Whenv attempts to insert a new thresh-
old with loss lnew and costcnew into a table, the inser-
tion position j is found so thatT i

v(j).loss < lnew and
T i

v(j + 1).loss > lnew. Then there are three different situ-
ations.

• If cnew > T i
v(j).cost, the new threshold is thrown

away, because it represents an increase in both infor-
mation loss and communication cost.

• If cnew < T i
v(j + 1).cost, the new threshold replaces

T i
v(j +1), because it has both smaller information loss

and smaller communication cost thanT i
v(j + 1).

• Otherwise, the new threshold’s cost falls between
T i

v(j).cost andT i
v(j + 1).cost, as does the informa-

tion loss. In this case, the new threshold is inserted
afterT i

v(j).

Variable Definition
d(u, v) Distance between nodesu andv

T i
v Table of thresholds at nodev for casei

Si Table of sums ofv′s children’s thresholds
Sources(v) Set of sources in subtree rooted atv
csize(S) Compressed size of setS
ccost(S) Computation cost of compressingS

Figure 3. Notation used in the algorithm de-
scription.

3.1. Case C

The simplest table to compute is the table for case C. In
this case,v and all nodes in its subtree are not allowed to
aggregate. This means there is never any information loss
in the subtree and the table only has one entry.

The node needs to determine whether compressing or
forwarding is cheaper and enter the appropriate threshold.
The cost of forwarding is

SC(1).size ∗ d(v, p(v))2 + SC(1).cost

and the cost of compressing is

csize(Sources(v)) ∗ d(v, p(v))2 +

2 ∗ ccost(Sources(v)) + SC(1).cost

If compressing is cheaper,

T C
v = 〈0, csize(Sources(v)) ∗ d(v, p(v))2 +

2 ∗ ccost(Sources(v)) + SC(1).cost,

csize(Sources(v)),′ C′, 1, 1, ...〉

The string of ones at the end represents the threshold num-
bers passed to each of the children. Since they will each
receive case 2, these point to the only entry inT C

w , for child
w. If forwarding is cheaper,

T C
v = 〈0, SC(1).size ∗ d(v, p(v))2 +

SC(1).cost, SC(1).size,′ F ′, 1, 1...〉

3.2. Cases A and N

In both cases A and N,v has to choose between the three
actions: forward, compress, aggregate. The difference be-
tween these two cases is an extraccost must be added to the
cost of any threshold in case A ifv chooses to compress.

• AggregateIn both cases, ifv chooses to aggregate, case
A will be passed to its children, and the information
loss will bef(Sources(v)), using the information loss
function we defined in Section 2.4. This loss will be

larger than the sum of the losses if all ofv’s children
aggregate. If there arek thresholds inSA, the full entry
into T A

v andT N
v is given by

〈f(Sources(v)), a ∗ d(v, p(v))2 +

SA(k).cost, a,′ A′, split(SA(k))〉

wherea is the aggregate size (equivalent to the size of
one datum) andsplit(SA(k)) is the lastd(v) entries of
SA(k), which give the information loss thresholds to
be passed to the children.

• CompressIn both cases, ifv chooses to compress, case
C will be passed to the children. The threshold added
to T N

v will be

〈0, csize(Sources(v)) ∗ d(v, p(v))2 +

ccost(Sources(v)) + SC(1).cost,

csize(Sources(v)),′ C′, split(SC(1))〉

The same threshold is added toT A
v , but with an addi-

tionalccost(Sources(v)) added to the cost.

• Forward If v chooses to forward, whichever case was
passed tov gets passed on to its children. For casei,
we try to add a new threshold toT i

v for every sum in
Si. For thetth sum inSi, we add

〈Si(t).loss, Si(t).size ∗ d(v, p(v))2 +

Si(t).cost, Si(t).size,′ F ′, Si(t).split〉

3.3. Correctness of the Dynamic Program

We will now argue that for a certain information loss
threshold, our algorithm will find the strategy that mini-
mizes communication cost. We will prove this for a central-
ized dynamic program with the information loss threshold
as a parameter. This accomplishes the same thing as the dis-
tributed algorithm described above but it is easier to reason
about.

Let COST (u, α, λ) be the minimum cost for the subtree
rooted atu for caseα with the information loss thresholdλ.
Let SIZE(u, α, λ) be the size of the message transmitted
by u in the minimum cost strategy. The base case occurs at
the leaves, where the only option is to compress, no matter
the case or threshold. We setd(base, p(base)) = 0, so the
minimum cost action at the base is always to forward.

Let Γ(v) be the set of all children of the nodev. Nodev
takes the thresholdλ and considers all possible ways to split
this among its children, given some discretization level. Let
the information loss given to childw by the jth split be
LOSSj(w). The minimum cost for nodev, given caseα
and thresholdλ, is

COST (v, α, λ) = min
splitsj

{

asize ∗ d(v, p(v)) +
∑

w∈Γ(v)

COST (w, A, LOSSj(w)),

csize ∗ d(v, p(v)) +
∑

w∈Γ(v)

COST (w, C, LOSSj(w)),

(
∑

w∈Γ(v)

SIZE(w, α, LOSSj(w)) ∗ d(v, p(v))

+
∑

w∈Γ(v)

COST (w, α, LOSSj(w)}

If COST (w, α, λ) gives the minimum cost for the sub-
tree rooted atw whenw receives caseα and information
lossλ, then this formula finds the minimum cost action for
each split and finds the minimum over all possible splits.
This is the minimum communication cost for the subtree,
for the particular case and information loss. Our distributed
algorithm removes the need for a discretization level on the
thresholds by building them from the bottom up, so thatv
knows exactly which splits will change the outcome for its
children.

3.4. Distributed Implementation

The algorithm we have described is easily implemented
in a distributed manner. Each sensor node is responsible
for storing its own table of thresholds. The algorithm re-
quires one bottom-up sweep, where each node calculates its
table and then forwards the table to its parent. Then the
parent is able to combine the tables of its children to create
its own table and these thresholds propagate up to the base
station. Then there is a top-down sweep when the appro-
priate threshold is selected by the base station (based on the
communication cost budget) and the (case, threshold num-
ber) pairs are sent from parent to child. Each node looks
up the appropriate action from its tables using the case and
threshold number it receives.

Although the strategy only has to be computed once un-
less cost estimates or covariances change and the storage of
the thresholds is distributed across the network, there could
potentially be a large number of thresholds and the number
of thresholds can increase rapidly as the network size in-
creases. One of the following methods can be employed to
reduce the communication overhead:

• Each node compresses its threshold tables. It will only
have to uncompress them when a change in the com-
munication cost budget causes a change in the network
strategy.

• Each node filters out very similar thresholds. Set some
precisionǫ for the cost thresholds, and if one threshold
has cost less thanǫ better than its predecessor in the
threshold list, it will be thrown out (since it also has
higher information loss).

3.5. Extensions

The algorithm we have presented can be extended in a
few straightforward ways.

• Temporal Correlations: We focus on a strategy for
sending a single round of measurements to the base
station. We will ignore temporal correlations, which
present the potential for more compression or aggrega-
tion. One approach to exploiting temporal correlations
is to allow a node to average its time series using a cer-
tain block sizeB. Our algorithm could be extended to
handle this case by replacing each node withB nodes,
one for each ofB time-steps. The distances between
these nodes could be set to0 and the correlation coef-
ficients set according to the temporal correlation of the
values seen at the particular node.

• Heterogeneous Battery Life: If the battery life of
nodes varies widely across the network, an algorithm
should take this into account when attempting to ex-
tend network lifetime by favoring nodes with a lot of
remaining battery life over those that are almost dead.
Our framework can be easily adapted to handle this by
assigning weights to the edges that make edges inci-
dent to dying nodes more expensive. This case then
becomes a special case of occlusion, discussed in Sec-
tion 4.4.

4. Experiments

We have run a series of experiments using MATLAB to
examine the trade-off between information loss and com-
munication cost using synthetic data. The sensor locations
are chosen uniformly at random from a10 by 10 square.
The rest of the parameters are chosen as follows:

• The values are drawn from a multivariate Gaussian,
so information loss and compressed size can be cal-
culated as discussed in Sections 2.4 and 2.3.

• Communication cost for sending a message of sizex
on edgee is xl(e)2.

• Cost of compressingS = cost of decompressingS =
1/CR∗ communication cost ofS on edge of length1,
whereCR is a constant cost ratio between communi-
cation cost and compression cost.

• The cost ratio isCR = 15 unless stated otherwise.

• The precision for discretization is∆ = .01.

• The correlation parameter ish = 1 unless stated oth-
erwise.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

P
er

ce
nt

 C
om

m
un

ic
at

io
n

C
os

t S
av

in
gs

Information Loss

Figure 4. Percent communication cost sav-
ings for a set of 80 sensors.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

P
er

ce
nt

 S
av

in
gs

 in
cr

ea
se

 o
ve

r
on

ly
 a

gg
re

ga
tio

n

Information Loss

Figure 5. The percent increase in savings we
achieve by using compression and aggrega-
tion, over using aggregation alone.

• The communication tree is a shortest path tree unless
stated otherwise.

In the following experiments we will explore the effects of
varying some of these parameters:CR, h, and the commu-
nication tree, as well as the impact of occlusion, where an
edge may be more expensive than its distance alone would
indicate.

4.1. Information Loss vs. Cost

Our first experiments simply validate the need to com-
bine aggregation and compression by showing the potential
for savings over either compression or aggregation alone.
Figure 4 illustrates the tradeoff between information loss
and communication cost savings for a particular 80 node
network. The percent savings are relative to the cost of
transmitting the data from each node to the base station
with no compression scheme. The point where information
loss is zero represents the total savings possible with com-
pression alone, which is only about 10%. By allowing only
about 15% information loss, this savings can be increased

Figure 6. The strategy if we require all the
information, regardless of communication
cost. There is no aggregation, and thus
zero information loss. Diamonds indicate
compression and circles indicate forwarding.
This strategy saves 3.8% over the maximum
communication cost–the cost of a strategy
with no compression at all.

to 20%. Figure 5 shows that a significant portion of the sav-
ings from Figure 4 comes from the use of compression in
addition to aggregation, especially for low information loss
tolerance.

The trees in Figures 6, 7, and 8 illustrate the locations in
the network where we start to perform aggregation, as the
communication cost budget is reduced. The diamonds in-
dicate the points of compression and the squares indicated
the points of aggregation. As we start to aggregate more,
the number of internal nodes that choose to compress is
reduced, because of our restriction on the compression of
aggregate data.

4.2. Cost Ratio

The dynamic program allows the network to find the op-
timal tradeoff between the communication cost savings of
compression and the computation cost for compressing and
decompressing. We have experimented with a few different
ratios of communication cost to compression cost. Figure
9 illustrates that the communication cost savings increase
for a particular information loss as compression becomes
cheaper. When computation is cheap compared to commu-
nication, the network will choose to compress at more in-
ternal nodes. As computation becomes more expensive, it
will become too expensive to compress more than once on

Figure 7. This strategy minimizes the infor-
mation loss if we can only pay 83% of the
communication cost. Squares indicate the
points of aggregation.

Figure 8. A third strategy with a lower com-
munication cost budget, only 75% of the max-
imum communication cost.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

P
er

ce
nt

 C
om

m
un

ic
at

io
n

C
os

t S
av

in
gs

Information Loss

Compression 50x cheaper than communication
Compression 15x cheaper

Compression 5x cheaper

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

N
um

be
r

of
 In

te
rn

al
 N

od
es

 C
om

pr
es

si
ng

Information Loss

Compression 50x cheaper than communication
Compression 15x cheaper
Compression 5x cheaper

Figure 9. (a) Effects of varying the ratio of communication c ost to computation cost in an 80 node
network. (b) The number of internal nodes compressing for di fferent cost ratios.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

P
er

ce
nt

 C
om

m
un

ic
at

io
n

C
os

t S
av

in
gs

Percent of Maximum Information Loss

h=0.5
h=1

h=1.5

Figure 10. Effects of varying the correlation
parameter in an 80 node network.

a path to the base station, as shown in Figure 9.

4.3. Communication Tree

The communication tree makes a large difference both
in the communication cost and information loss. Ideally the
tree should connect highly correlated nodes to provide op-
portunities for good compression and low information loss
aggregation while providing short paths to the base station
to keep communication costs low. We experimented with
three different communication trees. The first was the mini-
mum spanning tree, which will favor connecting nodes that
are close together. The second tree was the shortest path tree
(using the squared distance), which will favor short paths to
the base station. The last tree we tried was the balanced
tree from [5], which is a parameterized combination of the
minimum spanning tree and shortest path tree. The MST
is constructed and then any paths to the base station longer
thanα ∗ dSPT get shortcut to the base using the path from

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70

C
om

m
un

ic
at

io
n

C
os

t

Information Loss

SPT
MST
BAL

Figure 11. Comparison of MST,SPT and BAL
on 80 nodes. Performance of MST is much
worse than SPT.

the SPT. We usedα = 2 for our experiments. We expected
this tree to perform well because it should provide a com-
bination of the two desirable properties: connecting nearby
nodes and keeping short paths to the base station.

In our experiments we have seen that the shortest path
tree tends to outperform the other two trees (see Figure 11)
for small values of information loss. The squared distance
measure helps the SPT to avoid long edges while finding
short paths to the base. However, there are cases, such as
the one shown in Figure 12, where the MST outperforms the
SPT if we are willing to tolerate a significant loss in infor-
mation. The MST prioritizes connecting with nearby nodes
over finding short paths to the base, so it provides more op-
portunities for useful aggregation. The balanced tree is an
attempt to incorporate the best properties of each tree, and
indeed its performance is close to that of the best tree in
both cases. This experiment highlights the need to carefully
choose the communication tree to get the best information

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80

C
om

m
un

ic
at

io
n

C
os

t

Information Loss

SPT
MST
BAL

Figure 12. A different experiment on 80
nodes. This time the performance of MST
is closer to that of the SPT, and outperforms
MST for high information loss tolerance.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

C
om

m
un

ic
at

io
n

C
os

t

Percent Information Loss

SPT
SPT ignoring occlusion

Figure 13. Comparison of communication
costs between an SPT that counts occlusion
in distances and one that does not.

loss/communication cost tradeoff. In fact the best tree may
depend on the information loss tolerance; if the tolerance
is high, clustering the nodes for better averaging should be
prioritized over short paths to the base, and if the tolerance
is very low, the tree should be close to the SPT. We plan to
address this question in more depth in future work.

4.4. Occlusion

There are situations in sensor networks (especially in en-
vironmental modeling) where the communication cost be-
tween two nodes may not be a function of their distance, due
to some obstructions such as leaves or deer, for instance.
We will call such nodes ”occluded”. A model of where and
how occlusion effects the network is a vital ingredient for
finding a low cost, low information loss strategy, as we will
show in the following experiment.

For this experiment we have random selected 10% of the
nodes in the network to be occluded. If an edge is occluded
it is assigned a random weight from[1, M], which the cost

of communication on any adjacent edge will be multiplied
by. If both endpoints of an edge(u, v) are occluded, the
cost of communication on that edge will be multiplied by
w(u) ∗ w(v). Figure 13 compares the costs of an SPT
built using the occlusion weights and one that ignores the
weights. Even with only 10% of the network occluded,
there is a dramatic difference between accounting for the
occlusion and ignoring it.

The complication introduced by occlusion is that corre-
lation (and therefore compression and aggregation perfor-
mance) is tied to distance, but communication cost has been
decoupled from distance in some places. This means that
the best tree when only forwarding is allowed may no longer
be the best tree when the abilities to compress and aggregate
are introduced. We plan to explore new tree building algo-
rithms to address this issue in future work.

5. Conclusion

We have presented a framework for optimally combining
loss-less compression and lossy compression, given a com-
munication tree and communication cost budget. We have
shown experimentally that the combination of compression
and aggregation is able to save more energy than either of
these techniques alone, if some information loss can be tol-
erated.

Our algorithm and experiments have made several as-
sumptions that we hope to address in future work.

• We have assumed a model of the joint distribution
of the sources that allows us to calculate compres-
sion size and information loss using simple formulas.
Could these parameters be estimated efficiently in a
distributed manner?

• Our dynamic programming algorithm requires the as-
sumption that nodes can’t compress if they receive
any aggregate information. Removing this assumption
may require a more heuristic approach, but could po-
tentially save more energy.

• In this paper we have addressed the problem of find-
ing the best locations for aggregation and compres-
sion in a given network. We also compared the per-
formance of a few different networks. However, the
question of what network our algorithm would give the
best performance on has been left unanswered, espe-
cially in the case of occlusion, where the best network
when only forwarding is allowed may not be the best
network when compression and aggregation are intro-
duced.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70

C
om

m
un

ic
at

io
n

C
os

t

Information Loss

80% Occluded
60% Occluded
40% Occluded
20% Occluded

No Occlusion

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70

C
om

m
un

ic
at

io
n

C
os

t

Information Loss

Max Weight 20
Max Weight 10
Max Weight 2

Figure 14. (a) The effects of varying the percentage of occlu ded nodes in an 80 node network.
(b) The effects of varying the maximum weight of occlusion in an 80 node network.

References

[1] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Ap-
proximate data collection in sensor networks using proba-
bilistic models.ICDE, 2006.

[2] T. M. Cover and J. A. Thomas.Elements of Information
Theory. John Wiley, 1991.

[3] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor net-
works. VLDB, 2004.

[4] C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sen-
sor placements in gaussian processes.ICML, 2005.

[5] S. Khuller, B. Raghavachari, and N. Young. Balancing min-
imum spanning trees and shortest-path trees.Algorithmica,
1995.

[6] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-
optimal sensor placements: Maximizing information while
minimizing communication cost.ISPN, 2006.

[7] B. Krishnamachari, D. Estrin, and S. B. Wicker. The im-
pact of data aggregation in wireless sensor networks.ICDCS
Workshop on Distributed Event-based Systems, 2002.

[8] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: A tiny aggregation service for ad-hoc sensor networks.
OSDI, 2002.

[9] S. Nath, B. Gibbons, S. Srinivasan, and Z. R. Anderson.
Synopsis diffusion for robust aggregation in sensor net-
works. SenSys, 2004.

[10] S. Pattem, B. Krishnamachari, and R. Govindan. The im-
pact of spatial correlation on routing with compression in
wireless sensor networks.ISPN, 2004.

[11] S. S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed
compression in a dense microsensor network.IEEE Signal
Processing Magazine, 2002.

[12] C. M. Sadler and M. Martonosi. Data compression algo-
rithms for energy-constrained devices in delay tolerant net-
works. SenSys, 2006.

[13] A. Scaglione and S. D. Servetto. On the interdependenceof
routing and data compression in multi-hop sensor networks.
MobiCom, 2002.

[14] A. Silberstein, R. Braynard, and J. Yang. Constraint-
chaining: On energy-efficient continuous monitoring in sen-
sor networks.SIGMOD, 2006.

