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Abstract degree of spatial correlation. This correlation can be ex-

ploited to save energy by reducing the transmission of re-
In this paper, we consider algorithmic issues in employ- dundant information. The method of choice is to allow
ing lossy compression in order to extend the lifetime of nodes in the network to compress information they have
wireless sensor networks. We consider two metrics whichreceived before sending it on using some lossless com-
trade-off with each other: the communication and compu- pression scheme, such as Lempel-Ziv or distributed source
tation cost on one hand, and the information loss from lossy coding[12, 10]. This strategy trades off computation with
compression on the other. We consider the particular set- communication by reducing the size of the message that
ting where the lossy compression scheme is simple averagneeds to be sent. Usually a node will spend several orders of
ing. This compression scheme leads to lower computationmagnitude less energy on computation than on communica-
cost at a node compared to expensive loss-less compressiotion, so this technique is able to save a significant amount of
schemes, and in addition saves on the communication costenergy if the data from different sources is correlated. Com
However, such a scheme also loses significant information,pression saves communication cost all along the path to the
and must only be employed when node values are highlybase, as each node has a smaller message to transmit.
correlated. o _ However, compression is limited in its potential for en-
~ We study the problem of deciding the appropriate com- ergy savings. Loss-less compression is one end of a spec-
bination of loss-less and lossy compression schemes to iMyym  which preserves all of the information but has the
plement along an aggregation tree. The goal is to opti- highest communication cost of any aggregation scheme.
mize information loss given a budget on the communicationThe other end of the spectrum uses lossy compression (such
and computation costs. Our algorithmic framework is fairly ¢ averaging) at every node in the network, which mini-
general and handles various types of cost functions and in-mjzes the communication cost but loses the most informa-
formation loss measures. We perform extensive empiricaliion, If the network is nearing the end of its lifetime, loss-
studies to validate the need for such an algorithmic frame- |ggg compression may not save enough energy to extend the
work when network lifetime is highly constrained. network’s lifetime to the desired length. If we are willingy t
tolerate inaccuracies, then lossy compression, or aggrega
tion, has the potential to save more communication. Aver-
1. Introduction aging the values in a subtree reduces the size of the message
to approximately the size of the data from just one source,
Sensor networks are becoming increasingly useful for independent of the original s.ize of the message. .If the nodes
monitoring and studying a wide variety of physical phe- are highly correlated, this will lose less |nf_ormat|on. Ave
nomena. Wireless networks of sensors allow researcher®ding also has a much smaller computation cost than any
to take measurements over large spatial and temporal scale!9SS-1ess compression scheme.
without disturbing the surrounding environment. One im-  Another scenario where aggregation is important is a
portant limitation of a sensor network is the battery life of group of highly correlated nodes connected to the rest of
the sensors, and frequent visits to the site to change batterthe network by some edge which has a high communication
ies are often impractical. Therefore one of the major goalscost. An edge may be expensive in terms of communica-
in sensor networks research is increasing energy efficiencytion cost for a number of reasons: The two endpoints of the
in order to extend the lifetime of networks. edge may be at a large geographic distance from each other,
Physical phenomena such as temperature, humidity, orequiring the sender to use a lot of energy just so the mes-
light are inherently continuous and therefore exhibit ehhig sage will reach the receiver. Even if the nodes are relativel



S ting where all nodes start with the same battery life, big it i
easily adapted to the case of heterogeneous battery lives by
assigning appropriate weights to the nodes, as explained in

B —»@ Section 3.5.
W

\V; Our contributions include

e A model for measuring information loss.

\Y
e A dynamic programming algorithm that finds the op-
Figure 1. An expensive edge may require ag- timal locations for compression and aggregation for a
gregation to reduce high-cost communica- given network and communication cost budget.

tion. e A distributed implementation of the algorithm.

e An experimental evaluation of the effects of compu-
tation cost, correlation, communication tree and com-

close together, they still may have an expensive edge be- 1 hication cost on the information/energy tradeoff.

tween them. For instance, if the transmitting node has littl
battery life remaining, it may n_ot h_ave enough power.to reh— 1.1. Related Work
ably reach the receiver, resulting in a lot of retransmissio

Avoiding a lot of such transmissions is necessary in order to

keep the network connected longer. As another instance, a Energy efficiency in sensor networks is a very active area
od 2 could be expensive if therg is. some phvsical obstrhc%f research, mainly focussing on communication cost where
09 P . phy most energy savings are possible. Our effortintegrates com
tion between the two nodes which causes more messages t

tail and require retransmission. In anv of these Scenarios 8utation cost and information loss into this research direc
d ' y orth ’tion. Though both loss-less and lossy compression schemes
we must carefully manage the communication across this

edae in order to prevent these nodes from getting discon have been employed before in this context, the optimal com-
9 P 9 9 bination of the two schemes has not been looked at previ-
nected from the network.

ously. Though lossy aggregation schemes such as averaging
Consider the example depicted in Figure 1. There is haye been studied previously [3, 8, 9], this has been mostly
a small group of nodes very close together, and thereforejn the context of implementing aggregate queries over a net-
very highly correlated. The parent af in the communi-  \york. This work has therefore ignored the aspect of infor-
cation treeyr, is connected by an expensive edge, becausemation loss which occurs if the average is viewed as an ap-
the battery life ofw is very low. By averaging the values proximate representation of the actual values.
from s,t,u,v, andw, we can reduce the communication Previous work [7, 11] has considered different in-
cost on this expensive edge bby5 over forwarding, with  network loss-less compression techniques, and other
only a small loss of information. Loss-less compression is work[13, 10] has considered the interaction of such com-
unlikely to achieve as large a reduction, and is more expen-pression with routing. Patteet al [10] analyze the inter-
sive computationally than averaging. Sending the averageaction between correlation and the routing/compression al
will allow nodew to use less energy and stay alive longer, gorithms, and show that shortest path trees with opporunis
preventings, ¢, u, andv from becoming disconnected and  tjc compression are nearly optimal for a wide range of cor-
useless. relation parameters. Though the overarching question we
We consider combining lossless compression with lossy address still concerns how correlation effects routing, we
compression in order to maximize the lifetime of a densely differ in several regards: First, unlike the hop count neetri
deployed sensor network measuring some continuous physused in [10], we consider vastly more general cost metrics
ical phenomenon. Our goal is to provide a systematic ap-that take into account the effect of edge lengths on power re-
proach that trades off communication cost with information quirements, as well as battery life and obstacles. Suchta cos
loss. Given a set of sensors, a communication tree rooted ametric would now be unrelated to the correlation structure
a base station, and a communication cost budget, we find then the nodes, which leads to different optimal routing algo-
appropriate action from{ compress, average, forward} rithms. Second, our problem formulation takes into account
for each node, such that the total communication cost is lesdossy compression schemes and the associated information
than the budget and the information loss is minimized. Ex- loss, as well as the computation cost for the compress and
amples of strategies are illustrated in Figures 6,7, and 8.decompress operations.
The communication cost budget is determined based on the The idea of giving up accuracy to save energy has been
current battery life of the sensors and the desired lifetime explored before by modeling the underlying process gen-
of the network. We will describe our algorithm in the set- erating the sensor values and only sending the values that



differ too much from the predictions[1, 14]. Our work can of nodes in the network is needed. Because global estima-

be thought of as asking a higher level question: Given anytion would be expensive, the use of an appropriate model

such lossy compression scheme, what are the optimal places likely to be the preferred method for estimating informa-

in the network for implementing these schemes. tion loss. We describe a widely accepted model for spatial
We finally note that a line of work[4, 6] has addressed correlation in Section 2.2.

the problem of optimal placement of sensor nodes given a

spatial correlation model. We use the same Gaussian corre2.1. Cost Model

lation model to motivate our problem statement and develop

tractable information loss measures. However, our main fo-  For the purposes of our algorithm, we require a model

cus is on optimal placement of compression schemes giverfor both communication and computation costs. We model

a routing tree, and not in sensor node placement, which wecommunication cost as a general function of the size of a

assume is given. message and the distance it travels. We model the computa-
tion cost of compressing and decompressing as functions of

1.2. Outline of the Paper the initial size of the message being compressed or uncom-
pressed.

The paper is organized as follows. Section 2 discussesI t_Comn’][lrJ]nlcatlon f‘:':)hg: The com_mutr_1|cat|onthst ofazo-
possible methods for estimating the various parametersu 'on 1S the sum of the communication costs incurred on

needed by the algorithm, including communication cost, each edge. The communication cost on esigesome func-

computation cost and information loss. Section 3 describestlon of the size of the message being trgnsmlttgd aaIpss
b, and the distance between the endpoints.dfhis func-

the algorithm and possible generalizations and improve- . ) X
g P g P tion should provide an accurate estimate of the power re-

ments. Section 4 outlines our experimental evaluation of ", . .
the algorithm and parameters, and presents the results. qu_lred to transmit the_message agre,ssnd may be__deﬂ_ned
to incorporate occlusion, battery life, the probabilityfai-
ures and retransmissions, and any other factors effet¢teng t
2. System Model amount of energy used when transmitting on the edge.
For the purposes of our experiments, we model the com-
munication cost on edgeas the size of the message being

or estimate measurements, and sensors are placed at sori@nSmittedb., times the square dfe), the length of edge
subseti of those locations. We are also given a commu- ¢ Our algorithm is not dependent on the particular com-
nication treeT” on the sensor locations iiv. rooted at the  Munication cost function. The square of the distance is a

base station. Every node in this tree needs to send the datéeasonable function because it is reflective of transnmissio
it collects to the base station. When an interior node in the COStS for an outdoor sensor network; for indoor sensor net-

tree receives data from its children, it has three optiomrs: f ~ WOTKs the cost would increase as the fourth power of the

ward, compress, or aggregate. If the node chooses to comdistance.

press or aggregate, any incoming data that has been com-
pressed must first be uncompressed. Aggregation will pro-
duce the smallest output (the size of one measurement if we
are averaging) but will result in some loss of information. Computation Cost: The computation costs for com-
The aggregation function could be any lossy compressionpressing and decompressing the values from a set of sensors
scheme for which we can estimate the information loss. In could be estimated in three different ways. The costs could
our work we will consider averaging for its simplicity and be measured before deployment, estimated by each sensor
robustness. whenever it compresses, or predicted using a model.

A solution to this problem is an assignment of forward,  Sadler and Martonosi[12] showed experimentally that
aggregate or compress to each node in the tree, which adeomputation costs are often significantly lower than com-
heres to our constraints. The goal is to find a solution that munication costs, even for expensive loss-less compressio
minimizes the total information loss, given some communi- routines. This means it is usually a good idea to spend com-
cation cost budget. putation energy on compression if it will reduce the size of

Our algorithm requires some way of estimating com- the message at all. However, when the cost of decompress-
munication costs, computation costs and information loss.ing a nodes inputs in order to compress them all together
Communication and computation costs can be determineds considered, the question of where to compress becomes
locally by nodes using profiling tools, or estimated using more interesting.
an appropriate model. Information loss requires a model or  For our experiments we use a simple model that assumes
global estimation, since the correlation between every pai a fixed constant ratio of communication cost to computation

We are given a set of locationswhere we need to take

COST = bl(e)

ecT



cost for a set of a particular size. We discuss the effects ofwhereX is the covariance matrix.
varying this ratio in section 4.2

2.4. Information Loss
2.2. Correlation Model

) ) _ _ Quantifying the amount of information lost during ag-
Any algorithm requires estimates of the correlations be- gregation is a difficult challenge in our work. There are
tween nodes in order to calculate the information loss of yyo properties we require from an information loss func-

averaging a set of sensor readings. Instead of global estition f(), which quantifies the amount of information lost
mation of the correlation between each pair of sources, awhen aggregating a set of valugs

model of the joint distribution of the sources can be used

to estimate the correlations. The model can also be used to Non-negativityf(S) >0 VS

estimate the compressed size of a set of readings. We will

leave the question of efficient estimation of these parame- ¢ Non-decreasing(A) < f(S) VACS

ters for future work, and use a model of the sensors that o . . ) )

is standard in the literature. This model assumes that the One initial attempt is to use the residual information,
values are drawn from a multivariate Gaussian distribution /(5) = H(Slavg(5)), which would quantify the uncer-

For ann-dimensional Gaussian, each variaiilehas tainty left when using the average §fto try to recovers.
However, this could be negative, and does not account for
P(X =z)= ;6—%(1—;0%’1(@—#) the extra informatiory could give us about the entire set of
(2m)n/2|3| valuesV’ thatavg(S) does not give us.
whereY is then x n covariance matrix, and is the length To fix this problem we defineshformation lossas

n vector of means.
Since we are dealing with a continuous physical phe-

nomena that occurs at all points in space and not just at the The functionMI(X,Y) is themutual informationbe-

!OC?t'OnSf ;/;here I‘f{‘.'e h_a\t/e glaceq se?sors_, \;\_/e_tuse a %ene:ca{Ween two setsX andY’, as defined in [2]. This function
Ization orthe multivariate taussian to an Infinite NUMDEr ot o o 50 rohust measure of how well $&tan be used to

variables, called a Gaussian process. A Gaussian process

. fiod b functi dak | functi econstruct seX, and will always be non-negative. In the
IS Specitied by a mean func iqn(.) and a kernet Iunclion = - ¢q \where' is just the average oY, the mutual informa-
3(.,.), which give the mean for any given location and the

. . _ tion is given by
covariance between any two locations. The covariance be-

tv_veen the values at Iocatiom_zsandv is a function of the MI(X,avg(X)) = DE(X) — DE(X|avg(X)) (2)
distance between them and is given by

5 B —d(u)2/R? The information loss function is only positive whéris
(u,v) = ouove small in relation tol” (note thatM I(V \ S; V) = 0 when
whereh is a constant parameter that is learned from ob- S = V). For this reason we need to use a set of locations
servations. Our algorithm relies only on this covariance {©© compute information loss which is larger than the set of

model, which is independent of the means 1, so we  all sensor locationsV’. _
sety(u) = 0 for all nodesu. To calculateDE(X|avgX ), we use the chain rule of

entropies.

IL(S) = MI(V\ S,S) — MI(V,avg(S)) (1)

2.3. Compression Size m
DE(X1,Xy,.. Xp|Y) =Y DE(Xi[X1..X;1,Y) (3)

We calculate the compressed size of a set of sousces —
using the differential entropy of the séf,(.S), which mea-

sures the amount of uncorrelated information in the set. The differential entropy for a single random variabtg
Since the measurements are actually continuous randon@iven a set of other random variabléss

variables, the differential entropy could be infinite, so we 1

need to use the entropy of the discretization of these vari- DE(X;|A) = 5 log(2me(c%, — Sx, a8 42%.4) @)

ables. If the data is discretized to a precisiod\gthe com-

pressed size of is approximatelyD E(S) + nlog(1/A). where Yy, is the covariance vector with entries
For a multivariate Gaussian the differential entropy is Cov(X;,a) for eacha € A, and¥ 44 is the covariance
given by matrix restricted to sed.

1 Using equations (3) and (4) to finBE(X|avgX) re-
DE(S) = 5 log((2me)" det X)) quires the computation of the correlations between values
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- The algorithm makes the assumption that information loss
across different children is additive. This may be overesti
T mating the information loss, since the values in one subtree
-, may be used to reconstruct the values in another subtree.
" However, if the tree is constructed using some distance-
e based method such as minimum spanning tree or shortest
. path tree, the sensors in different subtrees will be farther
N away and thus likely to be uncorrelated or only weakly cor-
related, so that using values from another subtree may not

Communication Cost
-

T T e T help much with reconstruction. Finally, the base statian ca
compute the set of thresholds for the entire network, which

Figure 2. Pareto optimal information gives it a list of communication cost values and the associ-
loss/communication cost tradeoff points. ated minimum information loss. When given a communica-
From any point on this graph any decrease tion cost budget, the base station looks up the point with the
in communication cost requires an increase largest communication cost that falls under the budget and
in information loss and any decrease in uses this strategy.
information loss requires an increase in The information loss thresholds are a list of pairs
communication cost. P1,D2, ---Pm, Wherep;, = (loss;, cost;). The list is sorted

in increasing order ofoss; and decreasing order obst;,
representing places where an increase in information loss
in X and the random variablé = """ | X, /m for the co- will decrease the communication cost. For pairloss; is
1= « . . . .
variance vector and covariance matrix. The sum of Gaus-the minimum possible information loss for the correspond-
sian random variables, and therefore also the average, idhg communication costost;. There are a finite number of

Gaussian. The covariance betwe€nandY is given by these pairs since each pair corresponds to a certain strateg
and the information loss only changes when the set of ag-
1 & 1 & gregating nodes changes. Therefore the maximum possible
Cov (XJ" m ZXi) = Z Cov(Xj, Xi) (5) number of thresholds i8", wheren is the size ofi¥/, the
=1 =1 set of locations with sensors.
Equation (5) combined with equations (1) through (4) al- Assumption: We make the assumption that when a node re-

low us to computel L(S) using the covariance matriX ceives any average values, it cannot perform compression.

described in Section 2.2. This assumption is necessary in order to solve the problem
with dynamic programming. The assumption is reasonable,

3. Dynamic Programming Algorithm because compression of averages from different subtrees is

unlikely to achieve a significant further reduction in size.
The assumption allows us to introduce three cases repre-

Recall that we are trying to find a strategy that assigns ansenting the three distinct situations that nedeay be in.

action from{compress, average, forward} to each node,

in order to minimize the information loss while respecting
the communication cost budget. We are trying to compute
the Pareto optimal points shown in Figure 2. These points
can be computed either by fixing a communication cost and
minimizing information loss or fixing an information loss
threshold and minimizing communication cost. Since the o Case C: Some ancestor of will compress. Then

latter is simpler to work with, we will flip around the prob- must not only consider the uncompress cost but also is
lem and minimize communication cost subject to an infor- not allowed to aggregate.

mation loss threshold.

The algorithm to compute a strategy for a given network e Case N: Every node along the path fromto the base
uses bottom-up dynamic programming, with the table stor- station will forward. In this caseis free to choose any
age distributed across all nodes. Each node will determine of the three actions and will pay no uncompress cost.
all of the points at which a change in the strategy for its
subtree results in a smaller communication cost with more  For every case, a table of information loss thresholds,
information loss. We will call these Pareto optimal points T, is computed and stored at each node. These thresholds
theinformation loss thresholdS hese thresholds are sentto enumerate the levels of information loss where the strategy
the parent of the node, which computes its own thresholds.of the network changes in a way that lowers communication

e Case A: Some ancestor af will aggregate, but no an-
cestor ofv will compress. In this case,must consider
that the cost of uncompressing will be payed later if it
chooses to compress.



cost by allowing the loss of more information. A row of the Variable Definition

table is a tuple d(u,v) Distance between nodesandv
(oss, cost, size, action, tr, b, .t ) T Table of thresholds at nodefor casei
1 EO9h ' 2710 12y +-bdeg(v) S; Table of sums of/s children’s thresholds
wheredeg(v) is the number of children has and; is the Sources(v) Set of sources in subtree rootedat
corresponding threshold for thgh child. After the base csize(S) Compressed size of sgt
station has computed its tables, the strategy is propagated ccost(.S) Computation cost of compressitsg

down by passing the appropriate case number and along
with ¢; from the parent to each child, which the child uses ~ Figure 3. Notation used in the algorithm de-
to choose its action. scription.
The leaves of the tree always compress. For cases A and
C, a leaf’s table consists of one threshold with loss 0 and

cost 3.1. Case C
csize(1) * d(1,p(1))* + 2  ccost(1)
. : : : The simplest table to compute is the table for case C. In
wherecsize(1) is the compressed size of a single source, _, . I
this casep and all nodes in its subtree are not allowed to

d(l,p(l)) is the distance from the leaf to its parent, and . . : :
. . . aggregate. This means there is never any information loss
ccost(1) is the cost of compressing or uncompressing one .

source. For case N the cost of the threshold is onlyInthe subtree and the table only has one entry. .
) 9 The node needs to determine whether compressing or
esize(1) x d(l, p(1))* + ccost(1).

After computing its tables a node sends them to its par- forwarding is cheaper and enter the appropriate threshold.

ent. When the parent, receives the tables of all its chil- The cost of forwarding is

dren, it computes a temporary sum tablefor each of the Sc(1).size * d(v, p(v))? + Sc(1).cost
three cases by considering all possible combinations of the

information loss thresholds of its childrenS; holds the and the cost of compressing is
combinations of thresholds whenpasses down caseto

its children. The sum tables start with a single entry each, csize(Sources(v)) * d(v, p(v))* +
computed for an imaginary leaf with v as its parent (with 2 % ccost(Sources(v)) + Sc(1).cost
d(v',v) = 0), to account for’s own measurement. Then

for each childj, each entryl'(t) is combined withZ/(1). If compressing is cheaper,

The two thresholds are combined by summing the informa- c _ 9
tion loss, communication cost, and size, and additmthe Ty’ = (0, csize(Sources(v)) * d(v, p(v))” +
end of split7;(¢). Then for each additional entfy(u) a 2 x ccost(Sources(v)) + Sc(1).cost,
new threshold is created by combinifig(t) with T/ (u). csize(Sources(v)), C',1,1,...)

Node v uses the sum tables to compute thresholds for
its own tables. Each table is stored in increasing order of The string of ones at the end represents the threshold num-
information loss (the first threshold will always have zero bers passed to each of the children. Since they will each
information loss). Whem attempts to insert a new thresh- receive case 2, these point to the only entryf, for child
old with 10sS1,,.,, and costc,,..,, into a table, the inser- - If forwarding is cheaper,
tion positionj is found so thatT’(j).loss < lnew and )
TiH(j 4 1).1085 > lye. Then therg(are three different situ- Ty = (0,8c(1) size  d(v,p(v))* +
ations. Sc(1).cost, Sc(1).size, F/ ) 1,1...)

o If cpew > Ti(j).cost, the new threshold is thrown 3.2. Cases A and N
away, because it represents an increase in both infor-

mation loss and communication cost. In both cases A and N, has to choose between the three

o If chew < TE(j + 1).cost, the new threshold replaces actions: forward, compress, aggregate. The difference be-
Ti(j+1), because it has both smaller information loss tween these two cases is an exirast must be added to the

and smaller communication cost thaf(j + 1). cost of any threshold in case Adfchooses to compress.

e Otherwise, the new threshold’s cost faIIs_ between o Aggregaten both cases, if chooses to aggregate, case
T,(j)-cost andT;(j + 1).cost, as does the informa- A will be passed to its children, and the information
tion loss. In this case, the new threshold is inserted loss will be f (Sources(v)), using the information loss

afterT;(j). function we defined in Section 2.4. This loss will be



larger than the sum of the losses if all«@$ children asize x d(v,p(v)) + Z COST(w, A,LOSS;(w)),
aggregate. If there afethresholds ir5 4, the full entry wel (v)

. 3 N o
into 7" andT," is given by csize * d(v,p(v)) + Z COST(w,C, LOSS;(w)),

(f(Sources(v)),a * d(v, p(v))? + wel(v)
Sa(k).cost,a,” A, split(Sa(k))) ( > SIZE(w,a,LOSS;(w)) d(v,p(v))
whereq is the aggregate size (equivalent to the size of wel(v)
one datum) andplit(S4(k)) is the lasti(v) entries of + ) COST(w,a,LOSS;(w)}
Sa(k), which give the information loss thresholds to weT(v)

b d to the children.
© passediothe chiidren If COST (w, a, \) gives the minimum cost for the sub-

e Compressn both cases, i chooses to compress, case tree rooted atv whenw receives caser and information
C will be passed to the children. The threshold added loss )\, then this formula finds the minimum cost action for
to TN will be each split and finds the minimum over all possible splits.
_ ) This is the minimum communication cost for the subtree,
(0, esize(Sources(v)) * d(v, p(v))” + for the particular case and information loss. Our distelout
ccost(Sources(v)) + Sc(1).cost, algorithm removes the need for a discretization level on the
csize(Sources(v)), C', split(Sc(1))) thresholds by building them from the bottom up, so that

knows exactly which splits will change the outcome for its
The same threshold is addedTg', but with an addi-  children.

tional ccost(Sources(v)) added to the cost.

e Forward If v chooses to forward, whichever case was S+4+ Distributed Implementation

passed ta gets passed on to its children. For case

we try to add a new threshold & for every sum in The algorithm we have described is easily implemented

.. For thetth sum inS;, we add in a distributed manner. Each sensor node is responsible
for storing its own table of thresholds. The algorithm re-
(Si(t).loss, Si(t).size * d(v, p(v))* + quires one bottom-up sweep, where each node calculates its
Si(t).cost, Si(t).size, F', S;(t).split) table and then forwards the table to its parent. Then the
parent is able to combine the tables of its children to create
3.3. Correctness of the Dynamic Program its own table and these thresholds propagate up to the base

station. Then there is a top-down sweep when the appro-

We will now argue that for a certain information loss priate threshold is selected by the base station (basecton th

threshold, our algorithm will find the strategy that mini- Communication cost budget) and the (case, threshold num-

mizes communication cost. We will prove this for a central- ber) pairs are sent from parent to child. Each node looks

ized dynamic program with the information loss threshold UP the appropriate action from its tables using the case and
as a parameter. This accomplishes the same thing as the dibreshold number it receives.

tributed algorithm described above but it is easier to reaso  Although the strategy only has to be computed once un-

about. less cost estimates or covariances change and the storage of
Let COST (u, o, \) be the minimum cost for the subtree the thresholds is distributed across the network, theré&cou
rooted atu for casen with the information loss threshold ~ Potentially be a large number of thresholds and the number

Let STZE(u, o, \) be the size of the message transmitted Of thresholds can increase rapidly as the network size in-

by  in the minimum cost strategy. The base case occurs atceases. One of the following methods can be employed to

the leaves, where the only option is to compress, no mattefr€duce the communication overhead:

the case or threshold. We s&base, p(base)) = 0, so the

minimum cost action at the base is always to forward.
LetI'(v) be the set of all children of the node Nodev

takes the thresholdand considers all possible ways to split

e Each node compresses its threshold tables. It will only
have to uncompress them when a change in the com-
munication cost budget causes a change in the network

) . . : ) o strategy.
this among its children, given some discretization levelt L
the information loss given to childs by the jth split be e Each node filters out very similar thresholds. Set some
LOSS;(w). The minimum cost for node, given casex precisiork for the cost thresholds, and if one threshold
and threshold\, is has cost less thanbetter than its predecessor in the

threshold list, it will be thrown out (since it also has

COST(v,a,A) = min higher information loss).

splits;



3.5. Extensions

The algorithm we have presented can be extended in a g
few straightforward ways. i=
e Temporal Correlations. We focus on a strategy for " .

sending a single round of measurements to the base
station. We will ignore temporal correlations, which
present the potential for more compression or aggrega-
tion. One approach to exploiting temporal correlations o = = w
is to allow a node to average its time series using a cer-

tain block sizeB. Our algorithm could be extended to Figure 4. Percent communication cost sav-
handle this case by replacing each node vidthodes, ings for a set of 80 sensors.

one for each ofB time-steps. The distances between

these nodes could be sett@nd the correlation coef-

ficients set according to the temporal correlation of the
values seen at the particular node. ”

80

70

e Heterogeneous Battery Life: If the battery life of
nodes varies widely across the network, an algorithm
should take this into account when attempting to ex-

60

over only aggregation

50

tend network lifetime by favoring nodes with a lot of i ow “
remaining battery life over those that are almost dead. £ o o
Our framework can be easily adapted to handle this by o e

assigning weights to the edges that make edges inci- ° e
dent to dying nodes more expensive. This case then
becomes a special case of occlusion, discussed in Sec- Figyre 5. The percent increase in savings we

tion 4.4. achieve by using compression and aggrega-
tion, over using aggregation alone.
4. Experiments

We have run a series of experiments using MATLAB to 4 The communication tree is a shortest path tree unless

examine the trade-off between information loss and com- stated otherwise.

munication cost using synthetic data. The sensor locations

are chosen uniformly at random from18 by 10 square. In the following experiments we will explore the effects of
The rest of the parameters are chosen as follows: varying some of these parametetsR, h, and the commu-

nication tree, as well as the impact of occlusion, where an

e The values are drawn from a multivariate Gaussian, eqge may be more expensive than its distance alone would
so information loss and compressed size can be caljngicate.

culated as discussed in Sections 2.4 and 2.3.

« Communication cost for sending a message of size  4-1- Information Loss vs. Cost
on edgee is xi(e)?.
Our first experiments simply validate the need to com-

e Cost of compressing = cost of decompressing§ = bine aggregation and compression by showing the potential
1/C R+ communication cost of on edge of length, for savings over either compression or aggregation alone.
whereC'R is a constant cost ratio between communi- Figure 4 illustrates the tradeoff between information loss
cation cost and compression cost. and communication cost savings for a particular 80 node

network. The percent savings are relative to the cost of
transmitting the data from each node to the base station
e The precision for discretization i& = .01. with no compression scheme. The point where information
loss is zero represents the total savings possible with com-

e The correlation parameter s = 1 unless stated oth-  pression alone, which is only about 10%. By allowing only
erwise. about 15% information loss, this savings can be increased

e The cost ratio iR = 15 unless stated otherwise.



Figure 6. The strategy if we require all the
information, regardless of communication

cost. There is no aggregation, and thus
zero information loss. Diamonds indicate
compression and circles indicate forwarding.

This strategy saves 3.8% over the maximum
communication cost-the cost of a strategy
with no compression at all.

to 20%. Figure 5 shows that a significant portion of the sav-
ings from Figure 4 comes from the use of compression in
addition to aggregation, especially for low informatiosgo
tolerance.

The trees in Figures 6, 7, and 8 illustrate the locations in
the network where we start to perform aggregation, as the
communication cost budget is reduced. The diamonds in-
dicate the points of compression and the squares indicated
the points of aggregation. As we start to aggregate more,
the number of internal nodes that choose to compress is
reduced, because of our restriction on the compression of
aggregate data.

4.2. Cost Ratio

The dynamic program allows the network to find the op-
timal tradeoff between the communication cost savings of
compression and the computation cost for compressing and
decompressing. We have experimented with a few different
ratios of communication cost to compression cost. Figure
9 illustrates that the communication cost savings increase
for a particular information loss as compression becomes
cheaper. When computation is cheap compared to commu-
nication, the network will choose to compress at more in-
ternal nodes. As computation becomes more expensive, it
will become too expensive to compress more than once on

Figure 7. This strategy minimizes the infor-
mation loss if we can only pay 83% of the
communication cost. Squares indicate the
points of aggregation.

Figure 8. A third strategy with a lower com-
munication cost budget, only 75% of the max-
imum communication cost.
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Figure 10. Effects of varying the correlation
parameter in an 80 node network.

Figure 11. Comparison of MST,SPT and BAL
on 80 nodes. Performance of MST is much
worse than SPT.

a path to the base station, as shown in Figure 9.

the SPT. We used = 2 for our experiments. We expected
this tree to perform well because it should provide a com-
bination of the two desirable properties: connecting ngarb

The communication tree makes a large difference bothnodes and keeping short paths to the base station.
in the communication cost and information loss. Ideally the  In our experiments we have seen that the shortest path
tree should connect highly correlated nodes to provide op-tree tends to outperform the other two trees (see Figure 11)
portunities for good compression and low information loss for small values of information loss. The squared distance
aggregation while providing short paths to the base stationmeasure helps the SPT to avoid long edges while finding
to keep communication costs low. We experimented with short paths to the base. However, there are cases, such as
three different communication trees. The first was the mini- the one shown in Figure 12, where the MST outperforms the
mum spanning tree, which will favor connecting nodes that SPT if we are willing to tolerate a significant loss in infor-
are close together. The second tree was the shortest path tremation. The MST prioritizes connecting with nearby nodes
(using the squared distance), which will favor short pathst over finding short paths to the base, so it provides more op-
the base station. The last tree we tried was the balancegortunities for useful aggregation. The balanced tree is an
tree from [5], which is a parameterized combination of the attempt to incorporate the best properties of each tree, and
minimum spanning tree and shortest path tree. The MSTindeed its performance is close to that of the best tree in
is constructed and then any paths to the base station longeboth cases. This experiment highlights the need to cayefull
thana x dgpr get shortcut to the base using the path from choose the communication tree to get the best information

4.3. Communication Tree
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of communication on any adjacent edge will be multiplied
by. If both endpoints of an edge:, v) are occluded, the
cost of communication on that edge will be multiplied by
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built using the occlusion weights and one that ignores the
weights. Even with only 10% of the network occluded,
RN there is a dramatic difference between accounting for the
T Mg R occlusion and ignoring it.

Figure 13 compares the costs of an SPT

The complication introduced by occlusion is that corre-

lation (and therefore compression and aggregation perfor-

mance) is tied to distance, but communication cost has been

Figure 12. A different experiment on 80
nodes. This time the performance of MST
is closer to that of the SPT, and outperforms
MST for high information loss tolerance.

decoupled from distance in some places. This means that
the best tree when only forwarding is allowed may no longer
be the best tree when the abilities to compress and aggregate
are introduced. We plan to explore new tree building algo-

rithms to address this issue in future work.

4000
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SPT ignoring occlusion

5. Conclusion
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We have presented a framework for optimally combining

loss-less compression and lossy compression, given a com-
R . munication tree and communication cost budget. We have
: shown experimentally that the combination of compression
and aggregation is able to save more energy than either of
E i % % these techniques alone, if some information loss can be tol-

erated.

Figure 13. Comparison of communication
costs between an SPT that counts occlusion
in distances and one that does not.

loss/communication cost tradeoff. In fact the best tree may
depend on the information loss tolerance; if the tolerance
is high, clustering the nodes for better averaging should be
prioritized over short paths to the base, and if the tolezanc
is very low, the tree should be close to the SPT. We plan to
address this question in more depth in future work.

4.4. Occlusion

There are situations in sensor networks (especially in en-
vironmental modeling) where the communication cost be-
tween two nodes may not be a function of their distance, due

to some obstructions such as leaves or deer, for instance.

We will call such nodes "occluded”. A model of where and
how occlusion effects the network is a vital ingredient for
finding a low cost, low information loss strategy, as we will
show in the following experiment.

For this experiment we have random selected 10% of the
nodes in the network to be occluded. If an edge is occluded
it is assigned a random weight frofh, M], which the cost

Our algorithm and experiments have made several as-

sumptions that we hope to address in future work.

e We have assumed a model of the joint distribution
of the sources that allows us to calculate compres-
sion size and information loss using simple formulas.
Could these parameters be estimated efficiently in a
distributed manner?

e Our dynamic programming algorithm requires the as-
sumption that nodes can’t compress if they receive
any aggregate information. Removing this assumption
may require a more heuristic approach, but could po-
tentially save more energy.

¢ In this paper we have addressed the problem of find-
ing the best locations for aggregation and compres-
sion in a given network. We also compared the per-
formance of a few different networks. However, the
guestion of what network our algorithm would give the
best performance on has been left unanswered, espe-
cially in the case of occlusion, where the best network
when only forwarding is allowed may not be the best
network when compression and aggregation are intro-
duced.
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