Spotlight: Exploiting Smart Antennas for Future Wireless Networks

Romit Roy Choudhury
Dept. of ECE and CS

Duke University
Internet Edge

Internet continues to extend over wireless

- 2005 survey – 100,000 WiFi hotspots
- Projection – 167,000 by 2008
- User base – 75 million

Mesh networks further extendig WLANs

- Spreading in developing regions
 - VoIP at Mahavilachchiya, Sri Lanka: no telephone till date
 - Digital Gangetic Project, India
 - Rural wireless, China
 - Wireless Ghana
 - Mesa Grande Project, Southern California
Wireless growth in various other forms

- WiMAX
- Sensor Networks (motes and mobile phones)
- RFID Networks
- Body Area Networks
- Vehicular Networks
- Delay and Disconnection Tolerant Networks
- ...
Surveys and analysis unanimous on one front
“Tremendous growth till 2012 and beyond”

The Success Metric:
“Take wireless for granted, like electricity”
Applications

RFID and Sensor Networks
Citywatchers, Walmart
Intel, Philips, Bosch ...

Mesh Networks and Wireless Backbones
Microsoft, Intel, Cisco ...

Personal Area Networks
Cisco, Motorola, Intel, Samsung ...

Internet
Protocol Design

- Numerous challenges
 - Connectivity (nodes can be mobile)
 - Capacity (increasing demand)
 - Reliability (channels fluctuate)
 - Security
 - QoS ...

- Active research in progress
 - Many protocols already/being designed

- Till recent past, one commonality ...
Omnidirectional Antennas
IEEE 802.11 with Omni Antenna

RTS = Request To Send

CTS = Clear To Send
IEEE 802.11 with Omni Antenna
IEEE 802.11 with Omni Antenna

`` Interference management ``
A crucial challenge for dense multihop networks
Managing Interference

Several approaches

- Dividing network into different channels
- Power control
- Rate Control ...

Our Approach ...
Exploiting antenna capabilities to improve the performance of wireless multihop networks
Spectrum of Capabilities

» Switched Beam Antennas
» Reconfigurable Antennas
» MIMO Beamforming
» MIMO Spatial Multiplexing
» ...
From Omni Antennas ...
To Beamforming Antennas
To Beamforming Antennas
Outline / Contribution

- Antenna Systems → A closer look

- New challenges with beamforming antennas

- Design of MAC and Routing protocols
 - MMAC, ToneDMAC, CaDMAC
 - DDSR, CaRP
 - Cross-Layer protocols – Anycasting
 - Improved understanding of theoretical capacity
 - Security

- Experiment with prototype testbed
Commercial Antennas ...

- Signal Processing + Antenna Design + hi freq
 - Several types of beamforming antennas

- Many becoming commercially available
 - Fidelity Comtech (Phocus Array Antennas)
 - Paratek (DRWin scanning smart antennas)
 - Motia Inc. (Javelin appliqué to 802.11 cards)
 - CalAmps (DirectedAP digital beamforming)
 - Belkin (Pre-N smart antenna router – Airgo tech.)
 - Tantivy Communications (switching < 100 nanosec)
Electronic Beamforming Antenna [ATR Japan]

- Higher frequency, Smaller size, Lower cost
 - Capable of Omnidirectional mode and Directional mode
Switched and Array Antennas

- On poletop or vehicles
 - Antennas bigger
 - No power constraint
Beamforming Antenna Abstraction

- 3 Possible antenna modes
 - Omnidirectional mode
 - Single Beam mode
 - Multi-Beam mode

- Higher Layer protocols select
 - Antenna Mode
 - Direction of Beam
Antenna Beam

- Energy radiated toward desired direction

Main Lobe (High gain)

Sidelobes (low gain)

Pictorial Model

Courtesy of Fidelity - 43 degree high gain beam
Directional Reception

Directional reception = Spatial filtering

- Interference along straight line joining interferer and receiver

No Collision at A

Collision at A
Will attaching such antennas at the radio layer yield most of the benefits?

Or

Is there need for higher layer protocol support?
We design a simple baseline MAC protocol (a directional version of 802.11)

We call this protocol DMAC and investigate its behavior through simulation
DMAC Example

- Remain omni while idle
 - Nodes cannot predict who will transmit to it
DMAC Example

Assume S knows direction of D
DMAC Example

X silenced … but only toward direction of D
Intuitively

Performance benefits appear obvious
However ...
Clearly, attaching sophisticated antenna hardware is not sufficient

Simulation traces revealed various new challenges

Motivates higher layer protocol design
Outline / Contribution

- Antenna Systems → A closer look

- New challenges with beamforming antennas

- Design of MAC and Routing protocols
 - MMAC, ToneDMAC, CaDMAC
 - DDSR, CaRP
 - Cross-Layer protocols – Anycasting
 - Improved understanding of theoretical capacity

- Experiment with prototype testbed
New Challenges [Mobicom 02]

Self Interference
with Directional MAC
Unutilized Range [Best Paper, PWC 03]

- Longer range causes interference downstream
 - Offsets benefits

- Network layer needs to utilize the long range
- Or, MAC protocol needs to reduce transmit power
New Challenges II ...

New Hidden Terminal Problems
with Directional MAC
New Hidden Terminal Problem [IEEE TMC]

- Due to gain asymmetry

- Node A may not receive CTS from C
 - i.e., A might be out of DO-range from C
New Hidden Terminal Problem

- Due to gain asymmetry

- Node A later intends to transmit to node B
 - A cannot carrier-sense B’s transmission to C
New Hidden Terminal Problem

- Due to gain asymmetry

- Node A may initiate RTS meant for B
 - A can interfere at C causing collision
New Challenges III ...

Deafness

with Directional MAC
Deafness [ICNP 04]

- Node N initiates communication to S
 - S does not respond as S is beamformed toward D
 - N cannot classify cause of failure
 - Can be collision or deafness
Channel Underutilized

- **Collision**: N must attempt less often
- **Deafness**: N should attempt more often
 - Misclassification incurs penalty (similar to TCP)

Deafness not a problem with omnidirectional antennas
Deafness and “Deadlock”

- Directional sensing and backoff ...
 - Causes S to always stay beamformed to D
 - X keeps retransmitting to S without success
 - Similarly Z to X → a “deadlock”
ToneDMAC’s Impact

Backoff Counter for DMAC flows

Backoff Counter for ToneDMAC flows

Scenario (ii)
New Challenges IV ...

MAC-Layer Capture
The bottleneck to spatial reuse
Typically, idle nodes remain in omni mode

- When signal arrives, nodes get engaged in receiving the packet
- Received packet passed to MAC
- If packet not meant for that node, it is dropped

Wastage because the receiver could accomplish useful communication instead of receiving the unproductive packet
Capture Example

Both B and D are omni when signal arrives from A

B and D beamform to receive arriving signal
Outline / Contribution

- Antenna Systems → A closer look
- New challenges with beamforming antennas
- Design of MAC and Routing protocols
 - MMAC, ToneDMAC, CaDMAC
 - DDSR, CaRP
 - Cross-Layer protocols – Anycasting
 - Improved understanding of theoretical capacity
 - Security
- Experiment with prototype testbed
Impact of Capture

Beamforming for transmission and reception only is not sufficient

Antenna control necessary during idle state also
MAC Layer Solution

- Capture-Aware MAC (CaDMAC)
 - D monitors all incident traffic
 - Identifies unproductive traffic
 - Beams that receive only unproductive packets are turned off
 - However, turning beams off can prevent useful communication in future
CaDMAC Time Cycles

- CaDMAC turns off beams periodically
 - Time divided into cycles
 - Each cycle consists of
 1. Monitoring window + 2. Filtering window

All beams remain ON, monitors unproductive beams

Node turns OFF unproductive beams while it is idle.
Can avoid capture
CaDMAC Communication

- Transmission / Reception uses only necessary single beam

- When node becomes idle, it switches back to appropriate beam pattern
 - Depending upon current time window
Spatial Reuse in CaDMAC

- During Monitoring window, idle nodes are omni-
Spatial Reuse in CaDMAC

At the end of Monitoring window CaDMAC identifies unproductive links
Spatial Reuse in CaDMAC

During Filtering window \rightarrow use spatial filtering
Network Transport Capacity

Transport capacity defined as:

bit-meters per second

(like **man-miles per day** for airline companies)

Capacity analysis

\[
\sum_{bit=1}^{\lambda n T} \sum_{h=1}^{h(bit)} r^h_{bit} \geq \lambda n TL
\]

\[
\sum_{bit=1}^{\lambda n T} \sum_{h=1}^{h(bit)} kr^2 \leq WT.A
\]

\[
\text{Lim}_{n \to \infty} O\left(\frac{W}{\sqrt{n}}\right)
\]
Directional Capacity

- Existing results show
 - Capacity improvement lower bounded by \(O\left(\frac{2\pi}{\sqrt{\theta \beta}} \right) \)
 - Results do not consider side lobes of radiation patterns

- We consider main lobe and side lobe gains \((g_m, g_s)\)

- We find capacity upper bounded by
 \[
 O\left(\left(\frac{g_m}{g_s} \right)^{\frac{2}{\alpha}} \right) \left(\frac{1}{\sqrt{\pi}} \left(\frac{2}{\beta} \right)^{\frac{1}{\alpha}} \frac{1}{W n^{\alpha}} \right) \left(\frac{g_m}{g_s} \right)^{\frac{2}{\alpha}}
 \]
 - i.e., improvement of \(O\left(\left(\frac{g_m}{g_s} \right)^{\frac{2}{\alpha}} \right) \)

\textbf{CaDMAC still below achievable capacity}
Discussion

- **CaDMAC cannot eliminate capture completely**

 - Happens because CaDMAC cannot choose routes
 - Avoiding capture-prone links → A routing problem
Routing using Beamforming Antennas

Incorporating capture-awareness
Motivating Capture-Aware Routing

- Find a route from S to D, given A→B exists
 - Options are SXYD, SXZG

Capture

No Capture
Measuring Route Cost

- **Sum capture costs** of all beams on the route
 - Capture cost of a Beam $j =$ how much unproductive traffic incident on Beam j

- Route's **hop count**
- **Cost of participation**
 - How many intermediate nodes participate in cross traffic
Unified Routing Metric

- $U_{\text{route}} = \text{Weighted Combination of}
 1. Capture cost (K)
 2. Participation cost (P)
 3. Hop count (H)

$$U_{\text{route}} = \sum_{ij \in \text{route}} \omega_k K_{ij} + \omega_p P_i + H_{ij}$$

- Weights chosen based on sensitivity analysis
Protocol Design

- Source routing protocol (like DSR)
 - Intermediate node X updates route cost from S - X
 - Destination chooses route with least cost (U_{route})
 - Routing protocol shown to be loop-free

![Diagram showing route costs](image)
CaRP Vs DSR

CaRP prefers a traffic-free direction
“Squeezes in” more traffic in given area
Performance of CaDMAC
Throughput with CaRP

Aggregate Throughput (Mbps)

Random Topologies

Topology Number

CaRP + CaDMAC

DSR + CaDMAC

DSR + 802.11
Outline / Contribution

- Antenna Systems → A closer look
- New challenges with beamforming antennas
- Design of MAC and Routing protocols
 - MMAC, ToneDMAC, CaDMAC
 - DDSR, CaRP
 - Cross-Layer protocols – Anycasting
 - Improved understanding of theoretical capacity
 - Security
- Experiment with prototype testbed
Security and Privacy

- Growing concern in security and privacy
 - Can make/break wireless systems

- Many wireless attacks
 - Leverage the feasibility of easy overhearing
 - Facilitated by omnidirectional communication

- New opportunities with beamforming
 - Guide toward trusted receiver
 - Steer away from untrusted parties
 - Use diversity to detect malicious behavior
Attacker Bypassing

- Feasible to "skirt" around attacker
 - Disallow from overhearing all
 - MAC-Layer Anycasting
 - Route repair for bypassing

- Cause attacker distraction

Causing distraction

Uninterrupted transmission
Verification through Diversity

- **Spatial diversity useful for verification**
 - Example in Sybil Attack
 - Attacker pretends to be multiple entities

- **Privacy preserving verification possible**
 - All locations of nodes are requested
 - Beamformed in random sequence
 - In each transmission, random number transmitted
 - Finally, all nodes requested to report all numbers

- Sybil attacker cannot be at all locations
 - Will be caught
Outline / Contribution

- Antenna Systems → A closer look

- New challenges with beamforming antennas

- Design of MAC and Routing protocols
 - MMAC, ToneDMAC, CaDMAC
 - DDSR, CaRP
 - Cross-Layer protocols – Anycasting
 - Improved understanding of theoretical capacity
 - Security

- Experiment with prototype testbed
Testbed Prototype [VTC 05, Mobihoc 05 Poster]

- Network of 6 laptops using ESPAR antennas
 - ESPAR attached to external antenna port
 - Beams controlled from higher layer via USB
Testbed Prototype

Network of 6 laptops using ESPAR antennas
- ESPAR attached to external antenna port
- Beams controlled from higher layer via USB

Validated basic operations and tradeoffs
- Neighbor discovery
 - Observed multipath
 - 60 degrees beamwidth useful

- Basic link state routing
 - Improves route stability
 - Higher throughput, less delay
Neighbor Discovery

- Non LOS and multipath important factors
- However, 60 degree beamwidth useful

Anechoic Chamber

Office Corridor
Route Reliability

Routes discovered using sweeping – DO links
- Data Communication using DD links
- Improved SINR improves robustness against fading
Summary

- **Future = Dense wireless networks**
 - Better interference management necessary

- **Typical approach = Omni antennas**
 - Inefficient energy management
 - PHY layer research needs to be exploited
Omnidirectional Antennas
Summary

- **Our focus = Exploiting antenna capabilities**
 - Existing protocols not sufficient

- **Our work**
 - Identified several new challenges
 - Lot of ongoing research toward these challenges
 - Designed MAC, Network layer protocols
 - Theoretical capacity analysis
 - Prototype implementation

Our vision ...
Beamforming
Much More ToDo’s

- MAC/Routing/Security with MIMO
 - What are the right execution environments

- Can Spatial MUX and beamforming be combined
 - Observe environment, and prescribe optimal mode

- Combination of Smart and Omni antennas
 - Legacy users may remain omni -> can be network bottleneck

- What are the implications on infrastructure networks
 - MIMO, Beamforming in WiMAX, Thin WLANs, etc.

- Multicast support using beamforming/MIMO
 - Streaming audio, video, etc.
Thank You
for your patience

Collaborators
Nitin Vaidya (UIUC)
Xue Yang (Intel)
Ram Ramanathan (BBN)
Tetsuro Ueda (ATR Labs, Japan)
Other Research

- **Mobile Computing**
 - Using mobile phones as sensors (camera, mic, accelerometer ...)
 - Browse and query the world under phone microscope

- **Delay tolerant networks**
 - Communication over disconnected networks
 - Exploiting physical mobility for communication

- **Sensor Networks**
 - Algorithms for joint compression and aggregation
Backup Slides
Other Work

Sensor Networks
- Reliable broadcast [submitted]
- Exploiting mobility [StoDis 05]
- K-Coverage problems

Location management in mobile networks
- Distributed algorithms [IPDPS], [Mobihoc]

Scheduling protocols for 802.11n
- Combination of CSMA + TDMA schemes [WTS 04]
Future Work

- Next generation radios (software, cognitive)
 - PHY layer not be sufficient to harness flexibility

- Example
 - When should a radio toggle between TDMA and CSMA?
 - Dynamic channel access needs coordination

- Higher layer protocols necessary for decisions
Future Work

Exploiting Diversity Opportunistically

- Especially in the context of improving **reliability**

 - Link diversity
 - Route diversity
 - Antenna diversity
 - Channel diversity ...

- My previous work on **Anycasting** – a first step
- I intend to continue in this direction
Enhancing MAC \[\text{[Mobicom02]}\]

- **MMAC**
 - Transmit multi-hop RTS to far-away receiver
 - Synchronize with receiver using CTS (rendezvous)
 - Communicate data over long links
Routing with Higher Range

- Directional routes offer
 - Better connectivity, fewer-hop routes
- However, broadcast difficult
 - Sweeping necessary to emulate broadcast

- Evaluate tradeoffs → Designed directional DSR
2-hop flow

![Diagram of network scenario](image)

Loss in throughput due to deafness

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Line Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>ToneDMAC</td>
<td>--</td>
</tr>
<tr>
<td>DMAC</td>
<td>-</td>
</tr>
<tr>
<td>Circular-DMAC</td>
<td>-</td>
</tr>
<tr>
<td>IEEE 802.11</td>
<td>-</td>
</tr>
<tr>
<td>802.11</td>
<td>-</td>
</tr>
</tbody>
</table>

Flow Throughput (Mbps) vs Sending Rate (Mbps)

- **Deafness** indicated by red arrow
Optimal Carrier Sense Threshold

- When sidelobe abstracted to sphere with gain G_s

$$CS_{threshold-optimal} = \frac{\lambda^2 P_A G_d G_d}{4\pi r^\alpha (1 + (\frac{G_d}{G_s} SINR_{th})^{1/\alpha})^\alpha}$$

Provided, optimal CS threshold is above the Rx sensitivity threshold i.e., $\min \{CS_calculate, RxSensitivity\}$
Commercial Antennas ...

- Paratek (DRWin scanning smart antennas)
 - Beamforming in the RF domain (instead of digital)
 - Multiple simultaneous beams possible, each steerable

- Motia Inc. (Javelin appliqué to 802.11 cards)
 - Blind beamforming in RF domain (< 2us, within pilot)

- CalAmps (DirectedAP offers digital beamforming)
 - Uses RASTER beamforming technology
Commercial Antennas

- Belkin (Pre-N smart antenna router – Airgo tech.)
 - Uses 3 antenna elements for adaptive beamforming
 - http://www.techonline.com/community/tech_group/37714

- Tantivy Communications (switching < 100 nanosec)
 - http://www.prism.gatech.edu/~gtg139k/papers/11-03-025r0-WNG-benefitsofSmartAntennasin802.11Networks.pdf
While node pairs communicate
- X misses D’s CTS to S \(\rightarrow\) No DNAV toward D
While node pairs communicate

- X misses D’s CTS to S \rightarrow No DNAV toward D
- X may later initiate RTS toward D, causing collision
Abstract Antenna Model

- N conical beams

- Any combination of beams can be turned on

- Capable of detecting beam-of-arrival for received packet
Antenna Systems

- Signal Processing and Antenna Design research
 - Several existing antenna systems
 - Switched Beam Antennas
 - Reconfigurable Antennas
 - MIMO Beamforming
 - MIMO Spatial Multiplexing
 - Many becoming commercially available

For example ...
Antenna Beam

- Energy radiated toward desired direction

Main Lobe (High gain)
Sidelobes (low gain)

Pictorial Model
Wireless Multihop Networks

- Collection of wireless hosts
 - Relay packets on behalf of each other
 - Together form an arbitrary topology
 - May be connected to wired infrastructure

- 2 reasons to prefer multihop
 - Capacity and Power constraint
Wireless Multihop Networks

- Collection of wireless hosts
 - Relay packets on behalf of each other
 - Together form an arbitrary topology
 - May be connected to wired infrastructure

- 2 reasons to prefer multihop
 - Capacity and Power constraint
Applications

- Wide popularity in military
- Commercial applications emerging quickly

For Example ...
Applications
RFID and Sensor Networks
Citywatchers, Walmart
Intel, Philips, Bosch
...

Personal Area Networks
Cisco, Motorola, Intel, Samsung...

Mesh Networks and Wireless Backbones
Microsoft, Intel, Cisco ...

Several Challenges, Protocols
Internet

Several Challenges, Protocols
Internet

Mesh Networks and Wireless Backbones
Microsoft, Intel, Cisco ...

Personal Area Networks
Cisco, Motorola, Intel, Samsung...

RFID and Sensor Networks
Citywatchers, Walmart
Intel, Philips, Bosch ...
Sustaining Growth

Difficult challenge
Independent innovations will no longer be enough

Near perfect synergy will be necessary across
 Fields
 Layers
 Modules