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ABSTRACT
This paper shows the viability of precise indoor localization
using physical layer information in WiFi systems. We find
that channel frequency responses across multiple OFDM sub-
carriers can be suitably aggregated into a location finger-
print. While these fingerprints vary over time and environ-
mental mobility, we notice that their core structure preserves
certain properties that are amenable to localization. We demon-
strate these ideas through a functional prototype, implemented
on off-the-shelf Intel 5300 cards (that export per-subcarrier
information to the driver). We evaluate the prototype us-
ing the existing APs inside a busy building, a cafeteria, and
a museum, and demonstrate localization accuracies in the
granularity of 1m x 1m boxes, called spots. Results show
that our system, PinLoc, is able to localize users to a spot
with 90% mean accuracy, while incurring less than 6% false
positives. We believe this holds promise towards an impor-
tant development in indoor localization.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication

General Terms
Design, Experimentation, Performance

Keywords
Wireless, Localization, Cross-Layer, Application

1. INTRODUCTION
Precise indoor localization has been a long standing prob-
lem. While the frontier of localization technology has ad-
vanced over time, new kinds of location based applications
are raising the bar. For instance, the advertising industry
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is beginning to expect location accuracies at the granu-
larity of an aisle in a grocery shop [1]. Museums are ex-
pecting user locations at the granularity of paintings [2]
so users can automatically receive information about the
paintings that they walk by. In addition to such high ac-
curacy demands, these applications are inherently intol-
erant to small errors. If a localization scheme incorrectly
places a user in the adjacent aisle in the grocery store, or
downloads information about the adjacent painting, the
purpose of localization is entirely defeated. This is un-
like traditional applications – say GPS based driving di-
rections – where small errors are tolerable. As a conse-
quence, new localization schemes will need to meet strict
standards, without incurring additional costs of installa-
tion and maintenance. We refer to this problem as spot lo-
calization, where a device in a specific 1m x 1m box needs
to be accurately identified. Localizing the device outside
the box will be useless, irrespective of whether the esti-
mated location is close or far away from the box.

The state of the art in indoor localization is quite sophis-
ticated. Cricket [3] achieves high accuracy using special
(ultrasound-based) infrastructure installed on ceilings. Not-
ing the difficulties of installing special hardware, RADAR,
Place Labs and Horus [4–6] explored the feasibility of us-
ing signal strengths from existing WiFi APs. While RADAR
and Horus both rely on signal calibration, EZ [7] recently
demonstrated the ability to eliminate calibration at the ex-
pense of accuracy degradation. Summarizing all these schemes,
we find that the state of the art achieves median location
error of 4m and 7m, with and without calibration, respec-
tively [7] . While this accuracy can enable a variety of ap-
plications, there are others that need precision at the gran-
ularity of “1m x 1m”. This paper targets such high accura-
cies while ensuring that the calibration complexity is no
worse than RADAR or Horus. We call our proposal PinLoc,
as an acronym for Precise indoor localization.

PinLoc’s main idea is simple. While most WiFi based lo-
calization schemes operate with signal strength based in-
formation at the MAC layer, we recognize the possibility of
leveraging detailed physical (PHY) layer information. Briefly,
the intuition is that the multipath signal components ar-
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rive at a given location with distinct values of phase and
magnitude. When carefully aggregated over multiple OFDM
sub-carriers in 802.11 a/g/n, this rich data yield a finger-
print of that location. We find that, despite movements of
people and other objects in the environment, devices are
reliably classified to the correct spot. The war-driving ef-
fort is not significant (performed automatically by a Roomba
robot), and may be similar to RADAR and Horus.

Our observations seemed coincidental at first glance – we
expected the signal phases to be sensitive to the changes
in environment, and learning them on a per-location ba-
sis seemed infeasible. However, upon continued investi-
gation (discussed later), we observed that the phase and
magnitude over 30 subcarriers richly capture the scatter-
ing in the environment. Moreover, dynamic obstructions
in the environment distort the scattering in statistically re-
producible ways, while some of the distortions are tran-
sient with mobile objects. Finally, even if some of the sig-
nal paths get permanently blocked, the diversity available
from different APs injects resilience. All these factors to-
gether contribute towards a stable location fingerprint. RSSI,
on the other hand, is an average of the magnitudes on each
sub-carrier which hides fine-grained information about that
location, ultimately limiting the accuracy of localization.

Translating the above high level ideas into a working pro-
totype (using off-the-shelf wireless cards) forms the core
of PinLoc. The detailed PHY layer information is first ex-
tracted from the driver and sanitized using phase correc-
tion operations. The sanitized parameters are then fed to
a machine learning algorithm that models the channel re-
sponse distribution. Later, during system tests, the chan-
nel parameters are extracted from received WiFi beacons,
and classified to one of the war-driven spots. To address
energy issues, PinLoc disables active scanning, and only
uses beacons from APs in the same channel. Finally, the
individual modules are combined into a full system, and
tested over a range of scenarios. The results are promising,
with 90% mean accuracy, and false positives below 6%.

To the best of our knowledge, no prior work has demon-
strated PHY layer-based WiFi localization on off-the-shelf
platforms. Zhang et. al. [8] used signal amplitudes and
phases on USRP platforms to demonstrate location dis-
tinction. We note that location distinction detects when
a node’s location has changed (e.g., for security purposes),
but does not need to establish that each location exhibit
uniqueness. Localization is naturally a far stricter prob-
lem, especially when the target is sub-meter accuracies.

2. HYPOTHESES AND MEASUREMENTS
This section aims to experimentally show that PHY layer
channel information from existing WiFi deployments can
be an indicator of location. The next section draws on the
findings to design the components in PinLoc.

2.1 Background
Most modern digital radios use OFDM communication,
and transmit signals across orthogonal subcarriers at dif-
ferent frequencies. Each transmitted symbol X ( f ) is mod-
ulated on a different subcarrier f , and the quality of the
received symbol Y ( f ) will depend on the channel H( f ):

Y ( f ) = H( f )X ( f ) (1)

Vector H = (H( f )) f =1,··· ,F is called channel frequency re-
sponse (CFR), and it is a complex vector that describes the
channel performance at each subcarrier. A 802.11 a/g/n
receiver implements F = 48 data sub-carriers, and includes
a channel estimation circuit as a part of the hardware. The
Intel 5300 [9] card, released recently with a publicly down-
loadable driver, exposes the per-subcarrier CFR to the user.
Figure 1(a,c) shows examples of some CFR vectors.

Two important properties of the CFR are of interest in Pin-
Loc. (1) The CFR changes substantially once a transmitter
or a receiver moves more than a fraction of a wavelength
(12cm in case of WiFi [10]). (2) Even if the device is static
at a specific location, the CFR experiences channel fad-
ing due to changes in the environment at different time-
scales. This perturbs the location signatures, injecting am-
biguity in localization. However, it is unclear if these per-
turbations are completely random – if they are not, then
the fingerprint may exhibit some structure, making them
amenable to precise localization. The following measure-
ments are designed to answer these related questions.

2.2 Experiment Methodology
Our initial experiments were performed in a relatively busy
engineering building. We consider a set of 15 different spots,
at approximately 2m apart from each other, in our lab and
the adjacent classroom. We place a laptop equipped with
the Intel 5300 WiFi card [9] at each of these spots, and as-
sociate them to existing WiFi APs. The laptops are made
to download packets through each of the nearby APs – the
corresponding channel frequency responses (CFR) are recorded
for each packet. For each location we perform 4-6 mea-
surements at different times of the day, during busy office
hours, in the presence of several people.

2.3 Measurement, Hypotheses and Verification

With the above setup, we present and verify two main hy-
potheses that underpin PinLoc:

(Hypothesis 1) The CFRs at each location are not entirely
random, and actually exhibit a defined structure across time.

Testing on a Single Location: Figure 1(a) shows the CFR
recorded on a laptop at a fixed location (the laptop received
20,000 packets from a specific AP over a period of 100s, but
we only show 50 randomly selected packets to avoid visual
clutter). We observe two emerging clusters, denoted with
two vectors U1 and U2 – CFRs belonging to the same clus-
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Figure 1: (a) The amplitudes and phases of the channel responses H of 50 (out of 20000) packets sent over the same link
(we see two unique clusters, U1 and U2); (b) PDF of the complex value of the same 20000 channel responses H( f ) for a
single subcarrier f = 20; (c) The amplitudes and phases of the channel responses H of 50 packets at a different link.

ter are not identical but appear as noisy realizations of the
cluster mean. This is an outcome of fast-fading, caused by
different electro magnetic propagation effects.

Figure 1(b) plots the empirical probability density func-
tion (PDF) of the complex values of the CFR at the same
location for a single subcarrier f = 20. The PDF is con-
structed from all 20,000 packets. Darker colors represent
higher values of the PDF. We again see that two dominant
clusters emerge, each cluster appearing as a complex Gaus-
sian random variable, with means U1( f ) and U2( f ) and
variances V1( f ) and V2( f ) respectively. Of course, this is
only a visual indication – we discuss a general clustering
methodology later in § 3. Figure 1(c) shows the outcome
of the same experiment, but with the laptop placed at a
different location. We find only a single cluster of CFRs,
and the shape of the CFRs differs distinctly from those ob-
served in Figure 1(a). These few representative clusters
hint at the possible existence of complex but stable struc-
tures in per-location CFR, motivating further investigation.

Many Locations: We now test whether the observations
from these two locations generalize to a larger number of
locations, under various environmental changes. Figure 2
shows the distribution of the number of representative CFR
clusters from 30 distinct links in total. For each of the 30
links we aggregate all the available data from different times
of days, to get more complete information about the link’s
diversity. Evident from Figure 2 (a), more than 80% of cases
experience 4 CFR clusters or less. However, we still see
a substantial number of locations with a large number of
clusters, even up to 19. This could well suggest that the
CFR structure is quite random in dynamic scenarios (e.g.,
in the classroom), and thus, PinLoc may only be applica-
ble in very static environments.

To verify this, we next look at frequency of occurrence of
different clusters. Figure 2(b) shows that the distribution
is highly non-uniform, with a strong predominance of the
more frequent clusters (i.e., frequent clusters occur very
frequently, and the vice versa). More precisely, the fourth-
most frequent cluster occurs no more than 10% of the cases
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Figure 2: (a) CDF of the number of CFR clusters observed
at different locations; (b) CDF of the probability of seeing
the n-th most frequent CFR cluster.

in any spot, and the 5th , 6th , ... 19th clusters are almost
rare. This suggests that even if a few spots experience large
number of clusters, we are not very likely to see most of
them during the localization phase.

Impact of environmental changes: The above observa-
tion is surprising especially because the measurement was
conducted in presence of many humans. Humans are typ-
ically the most dynamic obstacles in the environment, and
are believed to disrupt WiFi signals. To shed more light on
the impact of human mobility onto CFRs, we perform a
controlled experiment. We place a laptop at a fixed loca-
tion and gather CFRs from two different APs. We run the
experiment during night, and observe a single CFR cluster
for each link. Then, we position a human at an increasing
distance d from the laptop.

We compute the cross-correlation of each received CFR
with the CFR cluster observed without the human – we
plot the CDF of the computed values. Figure 3 shows that
human obstructions do not create a significant change to
the CFRs from AP6230, probably because the human does
not alter any of the strong signal paths between the laptop
and the AP. The link to AP5A10, however, changes with
human movement; nevertheless, the change is substantial
only when the human is very close to the laptop (1 foot
away). §4 reports results from a busy cafeteria, showing
that PinLoc can be robust over time, even in presence of
hundreds of moving users.
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Figure 3: CFR cross correlation in presence of human be-
ings at a location for 2 different APs

(Hypothesis 2) The CFR structure of a given location is dif-
ferent from the structures of all other locations.

To evaluate the (dis)similarities of CFRs among different
locations, we divide the measured data into a training and
a test set. Each location has a set of CFR clusters pertain-
ing to an AP (represented by their mean and variance). For
a test CFR from a link L, we use correlation to find the best
matching CFR cluster from L’s training data. The correla-
tion value indicates similarity of the test CFR with its own
link, denoted as Sown . Similarly, for all other links to the
same AP (each link corresponding to a different location),
we find the one that exhibits maximum similarity of this
test CFR – we denote this similarity as Sother s . If a device’s
measured CFR is more similar to a different link than its
own link, we will naturally misclassify the device’s location.

Figure 4 (a) and (b) plot the CDF of the difference in sim-
ilarities Sown − Sother s for two different APs, for different
locations. If the difference is negative, then the packet is
likely to be misclassified. Also, the larger the difference,
the greater the confidence in packet location.
Figure 4 (a) and (b) show that the CFR from a single AP is
often sufficient to correctly classify location. Of course, in
some cases – such as [Locati on7, AP3490] – more than
50% of the CFRs are more similar to other locations, im-
plying misclassification. However, when considering the
CFRs of location 7 to a different AP, the misclassification
reduces significantly. This suggests that CFRs are diverse
across different APs, and this diversity can be leveraged to
improve localization. Figure 4 (c) shows the effect of ex-
ploiting AP diversity with 2 APs. Specifically, we now pick

the AP with the highest similarity difference. Clearly, there
is significantly less negative values in Figure 4 (c), implying
greater location accuracy.

One may ask: Figure 4 shows that a packet may be clas-
sified to one out of 8 different spots. In reality, the sys-
tem will need to discriminate between many more spots –
will the system scale to such scenarios? We note that Pin-
Loc does not need to discriminate between all spots in a
large area. Prior work has used WiFi SSIDs alone to localize
devices to around 10m x 10m regions in indoor environ-
ments [4]. PinLoc will leverage such schemes to first com-
pute a coarse-grained macro-location, and then discrim-
inate only between the spots inside that macro-location.
Having verified these hypotheses, we present PinLoc’s de-
sign. Thereafter, we evaluate PinLoc’s performance in § 4.

3. SYSTEM DESIGN
Learning: PinLoc measures the CFRs at spots of interest
during the training phase. Our goal is to identify the set of
unique clusters that are observed in the measurements (in
§ 2). We make a reasonable assumption to model the noise
(also called fast-fading) as a complex Gaussian noise, which
corresponds to Rayleigh fading [10]. Consequently, we model
the data at each location as a Gaussian mixture distribu-
tion [11] with K clusters (we take K = 10 in our case)1. We
estimate the parameters of the clusters (the mean and the
variance of each cluster) using variational Bayesian infer-
ence [11]. We use the Infer.NET [12] framework to imple-
ment the clustering algorithm.

Classification: Our classification algorithm is composed
of two parts. First, PinLoc computes a macro-location based
on WiFi SSIDs alone [4], and shortlists the spots within this
macro-location; we call these spots the candidate set, C .
The second task is to pick one spot from C , or to declare
that the device is not in any of these spots. To this end, the
WiFi device overhears beacons from the APs as it roams
around. We use log-likelihood [11] as a distance metric to
express how likely is that the observed CFR belongs to a
particular cluster from our training data-base. We find the

1Some locations may actually have more than 10 clusters but this
is rare and discarding them has little impact on performance.
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Figure 5: Pinloc performance in office environment (a) Accuracy, (b) False positive comparison with Horus (c) Per wifi-
area performance.

best matching cluster from the data-base which indicates
the most likely spot location. The operation repeats for ev-
ery packet received within a short time window (typically
30 packets from 3 APs), and the spot that is picked most
often (highest vote) is identified. PinLoc does not immedi-
ately declare the highest voted spot as the user’s location.
If the highest vote count is small (below a rejection thresh-
old), it suggests low confidence and the possibility that the
user is not located at any of the trained spots.

4. EVALUATION
War-driving and Experiment Design: We evaluate PinLoc
across 66 different spots in 3 environments: (1) engineer-
ing building with offices and classrooms, (2) busy univer-
sity cafeteria (3) the university museum. Each spot is 1m
× 1m in size. We war-drive with a laptop mounted on a
Roomba robot that moves in different directions across each
spot (Fig. 6). Every spot is measured for 4 minutes to find
the representative clusters in the training phase. Note that
we do not need to learn all the clusters in a spot; it is enough
to match one of the AP beacons to a learned cluster. How-
ever, more clusters we observe in the training and more AP
beacons we match, its more likely we are to successfully lo-
calize2. During the testing phase, the laptop associates to
all APs on the same frequency channel, and receive beacon
packets from them for a duration of 1s. This 1s duration
ensures that a mobile user (walking at 1m/s) remain in-
side the same spot while receiving beacons. Test samples
were collected on a different day, with more than 50 peo-
ple around, along with a high churn. PinLoc attempts to
correctly associate these test samples to a measured spot.

Metrics and Comparison: We use the two metrics to eval-
uate PinLoc. (1) Accuracy – the fraction of cases in which
the user was localized to the correct spot. (2) False positives
(FP) – the fraction of cases in which users were localized to
an incorrect spot/non-spot. In other words, false positives
also account for cases where PinLoc localizes the user to a
trained spot, even though the user was not located at any
of these spots. We also compare PinLoc with Horus to eval-
uate whether RSSI can achieve similar accuracy.

2Although smaller spots (upto 2cmx2cm) could be evaluated, we
limit the spot size to reduce war-driving complexity.

Figure 6: PinLoc war-driving at different spots in the mu-
seum. The Rhoomba robot mounted with a laptop, and
4 virtual wall devices at the corners of the spot.

4.1 PinLoc accuracy and false positives
Figure 5 reports results from the engineering building ex-
periments. PinLoc achieves nearly 90% mean accuracy across
50 spots (Figure 5(a)), consistently outperforming Horus.
False positives (FP) are also less than 7%, compared to more
than 25% in Horus (Figure 5(b)). RSSI based algorithm
is significantly worse than PinLoc, since it is represented
with a single real number. CFR is represented with 30 com-
plex numbers and contains much richer information.

Figure 5(c) zooms in to show the accuracy/FP on a per-
WiFi macro location. The number of spots per WiFi region
is shown on top of the bars. Similar accuracy/FP graphs
are plotted for cafeteria experiments in Figure 7(a). The
mean accuracy for the cafeteria case is 90.07% and the mean
FP is 4.5%. We subject PinLoc to a real application sce-
nario through experiments in the museum. PinLoc trains
and localizes 10 large paintings in one wing of the museum
(Figure 7 (b)). Mean accuracy of 90.28% and FP of 4.1%
suggests that PinLoc can potentially enable painting-level
localization. In all three scenarios, PinLoc achieves high
accuracy for most of the spots, except around 20% where
the performance drops. Careful investigation showed that
these spots received packets at low SNR from many APs.

Impact of mobility:

We turn to the cafeteria scenario to analyze the effect of
human mobility on localization accuracy. We take one hour
of test data for three spots in the cafeteria. We localize each
batch of 10 beacon packets and plot its success or failure in
Figure 7(c). We find that the time instants when localiza-
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Figure 7: PinLoc performance at (a) Cafeteria, (b) Museum. (c) Accuracy for three cafeteria spots over 1 hour.

tion failed are short and uniformly spread over the mea-
surement interval. The mean accuracy was 85% with 7%
false positives. Thus, even in busy environments such as
the cafeteria, PinLoc is able to provide robust localization.

5. DISCUSSION AND FUTURE WORK
•Height, orientation, phone mobility: PinLoc’s war-driving
and testing were performed on a 2D plane. In reality, since
users carry the mobile phone at different heights, it is un-
clear whether war-driving on one horizontal plane will scale
to a different plane. Issues may also emerge from phone
orientation, or users inserting their phones in pockets, bags.
Subjecting PinLoc to such real user scenarios will intro-
duce new challenges requiring deeper investigation and
understanding – we leave this investigation to future work.

• Structural changes in the environment: Our evaluation
consists of environmental changes with respect to human
mobility, and movement of chairs and objects. Major struc-
tural changes, such as repositioning of metal shelves and
furniture, or changes in AP positions, are likely to “derail”
PinLoc – a new round of war-driving would be necessary
to cope with them. However, as long as these structural
changes are in the order of large time scales (months or
years), the overhead of war-driving may be well amortized.

6. RELATED WORK
The topic of indoor localization is well studied. RSSI-based
localization such as RADAR [4], Horus [6] utilizes previ-
ously measured SSIDs and WiFi signal strength pattern for
localization. Place Lab [5] and the Active Campus [13] re-
duce the measurement overhead; coupling information from
WiFi and GSM base stations. Patwari et. al. [8] have re-
cently explored the use of WiFi signal characteristics to iden-
tify when a device has moved from one location to another.
They compare two observed channel responses and deter-
mine whether they belong to the same location. It does not
attempt to extract features from responses and map them
to locations, and hence it cannot be used for localization.

Time-based techniques such as PinPoint [14], and TPS [15]
utilize signal propagation delay to estimate distances be-
tween wireless transmit-receiver pairs. The Cricket sys-
tem [3, 16] utilize propagation delays between ultrasound
and RF signals for localization; requiring special installa-
tion of ultrasound detectors. Recently angle-of-arrival based
techniques utilize multiple antennas to estimate angles at

which signals arrive, and then geometrically localize de-
vices [17]. These techniques require extremely sophisti-
cated antenna systems and non-trivial signal processing
capabilities, unforeseeable on mobile devices in the near
future. PinLoc’s reliance on WiFi alone, along with the abil-
ity to utilize PHY layer information from off-the-shelf cards,
makes it attractive for immediate deployment.

7. CONCLUSIONS
This paper shows that PHY layer information, exported by
off-the-shelf Intel 5300 cards, can be adequate to localize
WiFi devices to meter accuracies in indoor environments.
We leverage the observation that multipath signals exhibit
stable patterns, and these patterns can lead to precise lo-
calization. Evaluation results from the engineering build-
ing, cafeteria and university museum demonstrate a mean
accuracy of 90% for 66 spots. We believe this is a step for-
ward in the area of indoor localization, even though sub-
stantial more work is necessary for real-world deployment.
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