
Scalable Social Analytics for Live Viral Event Prediction

Puneet Jain
Duke University

Justin Manweiler and Arup Acharya
IBM T. J. Watson Research

Romit Roy Choudhury
UIUC

Abstract

Large-scale, predictive social analytics have proven ef-
fective. Over the last decade, research and industrial ef-
forts have understood the potential value of inferences
based on online behavior analysis, sentiment mining, in-
fluence analysis, epidemic spread, etc. The majority of
these efforts, however, are not yet designed with real-
time responsiveness as a first-order requirement. Typi-
cal systems perform a post-mortem analysis on volumes
of historical data and validate their “predictions” against
already-occurred events. We observe that in many appli-
cations, real-time predictions are critical and delays of
hours (and even minutes) can reduce their utility. As ex-
amples: political campaigns could react very quickly to
a scandal spreading on Facebook; content distribution
networks (CDNs) could prefetch videos that are pre-
dicted to soon go viral; online advertisement campaigns
can be corrected to enhance consumer reception.

This paper proposes CrowdCast, a cloud-based frame-
work to enable real-time analysis and prediction from
streaming social data. As an instantiation of this frame-
work, we tune CrowdCast to observe Twitter tweets,
and predict which YouTube videos are most likely to
“go viral” in the near future. To this end, CrowdCast
first applies online machine learning to map natural lan-
guage tweets to a specific YouTube video. Then, tweets
that indeed refer to videos are weighted by the perceived
“influence” of the sender. Finally, the video’s spread is
predicted through a sociological model, derived from
the emerging structure of the graph over which the
video-related tweets are (still) spreading. Combining
metrics of influence and live structure, CrowdCast out-
puts sets of candidate videos, identified as likely to be-
come viral in the next few hours. We monitor Twit-
ter for more than 30 days, and find that CrowdCast’s
real-time predictions demonstrate encouraging correla-
tion with actual YouTube viewership in the near future.

Introduction
With enormous popularity and pervasive use, social net-
works have unexpectedly established a global infrastructure
to monitor, understand, and infer human sentiment at un-
precedented scale and fidelity. Both the research commu-
nity and industry have recognized this value, developing
tooling and algorithms to ingest and process social data at
petabyte scales, simultaneously exploiting and driving the
proliferation of “Big Data” analytics. However, the promise
of Big (social) Data, the availability of extreme quantities

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of data, creates substantial practical challenges. In particu-
lar, sophisticated analysis at scale demands overwhelming
quantities of computation to distill sparse social signals at
a relatively weak signal-to-noise ratio. Consequently, most
nontrivial work towards understanding social data has relied
on an offline analysis — bulk data processing or machine
learning enabling a “post mortem” on historical data to in-
fer macro-scale (coarse) trends. Alternatively, research to-
wards short-duration, micro-scale inference has successfully
demonstrated predictive power, but typically only “predict-
ing” past events — no longer relevant to real applications.
By neglecting nontrivial scalability challenges, thus barring
immediate live deployment, these predictive analytics can-
not yet enable practical, high-fidelity social forecasting.

Today, industrial systems can make simple social insights
in real time — e.g., tracking, but not predicting, trending
content (Topsy 2014). Alternatively, the academic commu-
nity has proposed sophisticated offline analyses with pre-
dictive power. In this paper, we seek to bridge the gap. We
present CrowdCast, a real-time framework for high-fidelity
predictive insights from social data. CrowdCast has been es-
pecially tuned for early inference of soon-to-become “viral”
events. As deployed, CrowdCast (1) absorbs a live stream of
Twitter tweets; (2) maps natural language tweets into spe-
cific topics; (3) weighs content sharing events a against a
model of social “tastemakers;” (4) monitors the progress of
a particular topic as an evolving, temporal graph structure of
information dispersion; (5) tracks correspondence with soci-
ological models of epidemic disease spread; and (6) reports
correspondences as early indications of “virality.”

Quantifying Virality

While we view CrowdCast’s techniques as more general, we
evaluate their efficacy in context of a specific social ques-
tion: “Which currently-unpopular videos on YouTube are
likely to go viral in the near future?” We choose this ques-
tion for two reasons: immediate applications and scientific
verifiability. Today, early identification of viral videos can
gainfully be applied to network optimization through mo-
bile data prefetching or in optimization of content delivery
networks (CDNs). Such predictions are also invaluable in
various business contexts. For example, with the rise of so-
called “viral marketing,” it is valuable to calibrate the suc-
cess or failure of an active campaign, enabling adjustments
in real time. Finally, an objective notion of “virality” can be
quantified through as the rate of change of YouTube viewer-
ship, enabling empirical evaluation of CrowdCast’s predic-
tive power.

There is poor consensus of what constitutes “virality.” For
empirical study, we require an unambiguous metric. Accord-
ingly, we define our prediction goal as follows: CrowdCast
only considers YouTube videos that are currently unpopular
(specifically, watched less than 1000 times) and will make
a binary prediction: viral or non-viral. A true positive result
will only be awarded if the video becomes extremely popu-
lar (specifically, being watched more than one half million
times), i.e., more than 500-fold increase in viewership.

Like many inference platforms, CrowdCast is tunable, de-
pending on the application’s relative sensitivity to false pos-
itives/negatives. For mobile video prefetching, we would
tune for minimal false positives, to reduce waste of scarce
battery life and wireless bandwidth. For CDN optimization,
substantial storage and network resources reduce the cost
of false positives, thus we would tune for few false nega-
tives to maximize system utility. As evaluated, CrowdCast
accurately predicts about 50% of the videos which actually
become viral, with about two false positives for every true
positive, only predicting 0.12% of non-viral videos as viral.

Architecting for Real-time Analytics
It is challenging to adapt prior art in offline methods for
virality prediction to the practical constraints of a real-
time platform. CrowdCast’s architectural design was refined
across many iterations, so that we may identify existing and
novel techniques feasible with tolerable computational cost.

CrowdCast seeks to apply the state-of the-art in viral event
detection, but uniquely, to do so in an online manner. Re-
cent work has shown that viral information spread can be
detected by: (1) constructing a tree with edges denoting how
a possibly-viral topic spreads from person to person through
social sharing events and (2) classifying only the structure
of that tree as either “wide” or “deep.” A deep tree struc-
ture, quantifiable as the average path length between any
pair of nodes in the tree, indicates a high tendency for a topic
to be re-shared. This re-sharing structure strongly correlates
to an explosive, viral information dispersion. Unfortunately,
known effective metrics (such as average path length) are
computationally intractable to compute over large graphs in
real time. However, prior work has shown that social net-
work relationships form scale-free graphs.1 We show that
subgraphs of the Twitter social network constructed by ac-
tual social sharing interactions are also scale-free. Heuris-
tics exist for low-complexity estimation of average path
length on scale-free graphs. Through this insight, Crowd-
Cast detects the characteristic viral dissemination structure
scalable, in real time.

While it is difficult to track and predict the viral spread
of a single video, it is entirely another matter to consider
all the thousands of videos in active discussion at any in-
stant. Thus, CrowdCast leverages the many optimizations of
Big Data software tooling that enable horizontal scalabil-
ity. Through a lightweight temporal analysis featuring on-
line machine learning and real-time use of Big Table storage,
CrowdCast continuously monitors live Twitter social sharing
activity in the aggregate, flagging and tracking anomalous

1A graph where vertex degree distribution follows a power law.

behaviors indicative of a viral spread. Ultimately, Crowd-
Cast maintains rank order of the ≈ 500 videos it perceives
as most likely to become viral in the next few hours.

CrowdCast judiciously applies Big Data software tooling
in an on-line fashion, carefully maintaining a tolerable com-
putational delay on the critical path (milliseconds). How-
ever, to be useful, CrowdCast’s predictions must not only be
timely, they must build upon, and ensure an analytic accu-
racy comparable to prior art. Accordingly, CrowdCast must
still leverage the output of a (relatively) slow Map Reduce-
style distillation on vast qualities of social data. However,
so that this distillation may be applied on the critical path,
CrowdCast periodically builds a real-time analytic cache
through a large-scale graph traversal — making a tiny con-
cession to data freshness for a massive efficiency gain.

Contributions
CrowdCast remains an active research project. We endeavor
to improve prediction accuracy and generalize applicability
across domains. Despite ample room for further research, we
believe CrowdCast today makes the following contributions:

Twitter Activity as a Scale-Free Graph: We model Twit-
ter activity as a graph structure and identify those graphs as
scale-free. Through this property, we can efficiently estimate
average path length. Ultimately, we enable real-time detec-
tion for the tell-tale structure of viral information dispersion.

Real-time Social Graph Analytics: We synergistically
combine advanced distributed graph processing based on
Google Pregel and low-latency Big Table data storage. By
merging these techniques, we enable an analytic cache of so-
cial interpersonal influence, amenable to real-time queries.

End-to-end Real-time System Architecture: We define a
social processing pipeline with a constant-time critical path.
Thereby, we enable live analysis feasible at the full ingress
rate of worldwide Twitter activity. In particular, this pipeline
includes: (1) online machine learning to understand natu-
ral language context; (2) per-topic tracking and aggregation
Twitter social activity; (3) and computation and storage re-
quirements linear with the ingress rate of Twitter tweets.

We deployed CrowdCast as a complete prototype in a pro-
duction cloud. 30 days of live predictions demonstrated suf-
ficient correlation with future YouTube viewership to enable
plausible applications of viral video prediction.

Related Work
CrowdCast extends or is complementary to a large body of
related work in social analytics, especially those techniques:
(1) based on theory of information diffusion, (2) understand-
ing social influence, (3) predicting from past Twitter activity,
and (4) enabling live social forecasting applications.

Sociological Models of Virality
Substantial prior work considers the nature of viral infor-
mation spread. (Guerini and Strapparava 2011) advocates
that the nature of content drives virality, rather than “influ-
encers.” This notion is partially contradicted by (Hoang and

Lim 2012), proposing the SIR/SIRS-based virality model,
and emphasizing the importance of influencers. Recently,
several researchers have hypothesized various factors con-
tributing to virality of a video. A TED talk (Allocca 2012)
explains how “tastemakers,” “creatively participatory com-
munity,” and “unexpectedness” contributes to virality on
YouTube. (Broxton et al. 2010) analyzes two years of con-
fidential YouTube datasets to understand how human nature
and other factors contribute to viral video spread. The au-
thors present correlation between the degree of social shar-
ing and the video viewership, how video category corre-
lates to social linking behaviors, and differentiate the lifes-
pan of popular and viral videos. (Shamma et al. 2011) con-
siders data from one day of Yahoo! Zinc sessions to estab-
lish correlation between sharing behavior and video view-
ership. (Berger and Milkman 2009) considers psychologi-
cal/emotional causes underlying viral news articles, using
three months of The New York Times. (Wallsten 2010) con-
siders the famous 2008 “Yes We Can” election campaign for
President Barack Obama, and how community contributed
in making this video viral.

The model proposed by (Goel, Watts, and Goldstein 2012)
influences our techniques. The authors understand a viral
spread based on a underlying structure of a social sharing
graph. Importantly, the work differentiates popular from vi-
ral spread. Popular stories display a star-like structure (sim-
ilar to one-time broadcast, implying that a large number of
individuals received information from same source) and then
the spread quickly dissipates. Conversely, viral stories show
a tree-like structure where many nodes participate in infor-
mation spread through active re-sharing. While the authors
are able to identify viral spread by structure, the analysis
assumes a complete dataset, only available after the phe-
nomenon has occurred. We extend this model across various
dimensions: (1) a moving-window temporal analysis based
on tweet creation times; (2) incorporating graph models of
influence, in addition to structure; (3) making real-time pre-
dictions based on partial information; and (4) through com-
putational optimizations to enable tractable live analysis.

Influence Analysis in Social Networks
The nature of interpersonal influence (who influence whom,
and to what degree) has been studied extensively in social
networks. Various metrics have been proposed to quantify
how influence contributes to information spread, especially
by understanding the importance of individuals in the net-
work. Most popular have been measures of vertex centrality,
such as degree, closeness, betweeness, and PageRank. How-
ever, these metrics attempt to quantify influence in a static
network context, and might not fully apply with dynamic
behavioral patterns in real networks. (Cha et al. 2010) con-
siders the impact of Twitter in-degree, “retweets,” and “men-
tions,” contradicting prior hypotheses that high in-degree
should imply higher influence. (Weng et al. 2010) extends
PageRank to define “TwitterRank,” an influence metric that
accommodates link structure as well as topic similarity.

We blend techniques of static and dynamic graph influ-
ence analysis. CrowdCast periodically applies PageRank to
a (relatively) static graph of social relationships. PageRank

influence scores are then applied as weighting mechanism
in a second dynamic graph, based on dynamic Twitter social
activities (e.g., tweet, retweet, mention, reply). We believe
this hybrid approach is especially promising, as it blends the
advantages of global omnipotence in large-scale static graph
analysis with live insights over smaller, dynamic graphs.

Future Predictions using Twitter
(Zaman et al. 2010) presents a technique to predict retweet
count of an individual tweet, using the last few hours of
tweets and retweet count data. (Dong et al. 2010) considers
applications of Twitter to improve real-time web search re-
sults. (Sakaki, Okazaki, and Matsuo 2010) shows the possi-
bility of using Twitter to aid earthquake prediction in Japan,
outperforming existing earthquake notification systems such
as JMA. (Mathioudakis and Koudas 2010), (Szabo and Hu-
berman 2010), (Lerman and Hogg 2010) uses Twitter for
making predictions, such as popularity of a digg.com arti-
cle, YouTube videos, and trending topics.

These techniques are very much aligned with our goals for
CrowdCast, however they uniformly share the same major
caveat. Each of these works relies on an offline analysis that
cannot be easily run with a bounded makespan, and thus they
are not suitable for real-time prediction applications.

Motivating our design, (Morstatter, Liu, and Carley 2013)
shows that Twitter’s live 1% randomly-sampled public tweet
stream contains sufficient data to extract global trends and
patterns. In our context, viral events occur at massive scale,
shared by tens or hundreds of thousand of users; even at low
sampling rates, early warnings of viral events are detectable.

Applications of Live Viral Video Prediction
Prior work has identified various applications for predicting
soon-to-be viewed videos. (Bao et al. 2013) proposes op-
portunistic video content prefetching for smart devices over
WiFi, reducing the data cost on 3G/4G wireless for con-
sumers and cellular providers. Related to our technique of
predicting viral videos via Twitter, (Agarwal 2009) consid-
ers using Twitter-provided real-time lists of popular Inter-
net topics as a basis to optimize content delivery networks
(CDNs), enabling predictive content prefetching. Several
industrial services provide real-time analysis of popular
YouTube videos. Closest to our goals, Unruly Media claims
a proprietary heuristic called “ShareRank” to provide a vi-
sual dashboard of popular videos from the last 24 hours (Un-
rulyMedia 2013). However, Unruly does not publish its al-
gorithms: neither is it clear what (if any) predictions are per-
formed, nor is there quantification of accuracy or timeliness.

Overview and System Design
We propose CrowdCast as a cloud software framework for
Crowdsourced (social) foreCasting. CrowdCast accommo-
dates the continuous, high-volume, real-time nature of on-
line social networks, tapping a torrent of social data in real
time to make live predictions of viral behaviors. While our
techniques are more generally applicable, we focus our at-
tention on Twitter for three reasons, (1) high volume: ac-
cording to recent statistics, 500 million tweets per day with a

UnLabeled
Tweets Training

Stream Filtering

Twitter Streaming API

URL Extraction

Feature Extractor

Multi-class
Classifier

MapReduce Engine
+

Follower
Graph

Apache Giraph

No Video
URL

Activity Graph

Viral
Videos

Video URL

1% Tweets

Filtered by
keywords:
"youtube", "Video"

Influence
Score

Cloud Infrastructure, Hadoop

Vowpal Wabbit
on Hadoop

IN1

(All Labeled
Tweets)

IN3

IN2 IN4

OUT4

OUT3

OUT2

Twitter Polling APIs
Using parallel Accounts

to combat rate limitations
(UserID)

Follower List

HBase

Test

OUT1

Spread Measure

Figure 1: CrowdCast architecture:

Critical path: follow the flow of Twit-
ter tweets down from the top-left cor-
ner, ultimately contributing to the ac-
tivity graph. Unlabeled tweets pass
through classification, mapping each
to an appropriate video id.

Graph processing: Following Tweets
right through the top-right corner and
below traces construction of the ana-
lytic cache, used in influence analysis.

record of 143,199 tweets in one second (Twitter blog 2013);
(2) open, live access: Twitter directly provides a free stream
sampling 1% of live tweets over a TCP connection, and a
10% live sampling “Decahose” is available for pay (GNIP
2014);2 (3) live interactivity: both by design and in prac-
tice, Twitter activity tends to center around what is happen-
ing now, encouraging a live, distributed conversation.

CrowdCast is engineered to process a live stream of Twit-
ter tweets at 1%, 10%, or even 100% rates. We have de-
ployed our prototype on several virtual machines in a pro-
duction infrastructure-as-a-service (IaaS) cloud. As Twit-
ter traffic is bursty, both with seasonality effects (e.g., time
of day) and with exceptional events (e.g., political upris-
ing), we design CrowdCast to accommodate load variabil-
ity through elastic scalability — growing and shrinking the
deployment to optimize for need and cost. To enable full-
Twitter scalability with a reasonable cost (10s of virtual ma-
chines, not 1000s), however, it is essential that CrowdCast’s
performance degrades only linearly with load, necessitating
a constant-time per-tweet critical path. To enable such a per-
formant pipeline at scale, CrowdCast synergistically com-
bines the state-of-the-art in Big Data software tooling.

In this section, we (1) provide background on the Big
Data software tooling leveraged in the CrowdCast solution;
(2) describe the Hadoop processing applied to a large scale
(billions of edges) Twitter relationship graph to distill key
influencers, known as “tastemakers;” (3) present a constant-
time critical path processing pipeline applied to a live stream
of Twitter tweets, and featuring online machine learning on
natural language; (4) describe the construction of per-video
Twitter activity graph, enabling quantification through met-
rics of influence and graph structure analysis, and informing
predictions of viral events; and (5) overcome the computa-
tional challenge of live graph structure analysis, eliminating
the final barrier to real-time deployment of CrowdCast.

Supporting Platforms
CrowdCast must leverage state-of-the-art software frame-
works to enable production-level robustness at Twitter scale.

2100% tweet access is available for purchase, but no provider
currently distributes greater than a 10% sampling as a live stream.

Apache Hadoop and HDFS Hadoop Map Reduce en-
ables high-volume data-centric processing in a distributed
cluster environment. The Hadoop filesystem (HDFS) pro-
vides high-throughput distributed storage, optimized for
bulk IO. HDFS serves as a backing store to Apache HBase.
Hadoop Map Reduce is a prerequisite for Apache Giraph.

Apache HBase HBase is an interactive (low-latency) key-
value data store in the model of Google Big Table. HBase
efficiently maintains a logical mapping of ordered keys to a
set of values, with values subsequently ordered according
to a system of temporal “versioning.” Versioning support
makes HBase amenable to CrowdCast’s requirements for
time-series analysis: for a particular key, HBase efficiently
returns all relevant data in temporal order. HBase is also
well-suited to managing large quantities of streaming data
with deadlines. CrowdCast configures HBase to automati-
cally expire (discard) sufficiently-old social data, once it is
too old for a meaningful contribution to analytics.

Apache Giraph Giraph is a groundbreaking platform for
large-scale, distributed graph analysis, inspired by Google
Pregel (Malewicz et al. 2010). CrowdCast applies PageR-
ank on a Twitter connectivity graph (follower-friend rela-
tionships) of≈ 133 million vertices and≈ 1.7 billion edges,
generated from 3 months of continuous polling to Twitter’s
public APIs, and integration of academic datasets (Kwak et
al. 2010; Li and others 2012). Giraph completes PageRank
on the complete graph within 1.5 hours on a 10-node cluster.

Vowpal Wabbit Vowpal Wabbit is a data-driven machine
learning toolkit, principally for regression and classifica-
tion, and is highly optimized to run online in one pass. Im-
pressively, Vowpal Wappit is IO, rather than computation-
ally, bound. CrowdCast applies Vowpal Wappbit for a bag-
of-words natural language classification to map tweets to
a specific YouTube video. For example, during the well-
publicized “Gangham Style” music video viral event, many
tweets may imprecisely reference the video as “gangham,”
“g-style,” or simply “dance vid.” Online machine learning
classification enables CrowdCast to translate this natural
language text to a specific YouTube video content ID.

Analytic Cache (each user)
CrowdCast leverages a form of influence analysis in predic-
tions of viral spread. Specifically, CrowdCast takes a large
Twitter follower-friend relationship graph as input, applies
the PageRank algorithm, and outputs PageRank scores as a
proxy for quantifying relative influence. To build our graph,
we initialized an HBase table with all inferable relationships
from two existing datasets (Kwak et al. 2010) and (Li and
others 2012). Additional Twitter datasets could not be used
due to anonymized user IDs (Cha et al. 2010). The result-
ing graph was still too sparse and disconnected for our use.
Therefore, we supplemented this table by crawling Twitter
public APIs for six months (at the rate limit specified by
Twitter terms of service). We continue to enhance our graph.

Our graph currently contains 131 million users and 1.7
billion follower-friend relationships. While this is far from
a true replication of the global Twitter relationship graph, it
is sufficiently dense to be useful. However, it is not feasible
to traverse this graph in real time. Instead, CrowdCast pe-
riodically leverages the Giraph graph processing framework
to compute a PageRank score for each vertex (completing
after several hours). CrowdCast stores each PageRank score
in an HBase table, keyed by user ID. We refers to this table
as an analytic cache, reflecting that it provides constant-time
access to this periodic, long-running analytic process.

The values accessible from the analytic cache (in constant
time) are the PageRank scores of individual users. We em-
ploy these values as vertex weights in the context of a Twitter
“activity graph” (discussed later), tracking the Twitter social
actions for a particular video. For a fixed aggregated activ-
ity graph weight, a few vertices with large weights reflects a
different form of information dispersion than many vertices
with low, similar weights. Namely, the former case reflects
“celebrity” endorsement; the later is indicative of a peer-to-
peer (or “viral”) spread — exactly what we seek to detect.

Constant-time Critical Path (each tweet)
Globally, Twitter users take thousands of social actions per
second, in various forms: “tweet” (original text content up to
140 characters), “retweet” (re-shared text content, increas-
ing dissemination to the followers of the re-tweeting user),
“mention” (tweet directed to or about a specific user, in-
creasing the probability that the mentioned user will see the
content in her Twitter “feed”), or “reply” (similar to a men-
tion, but responding to the content of a particular tweet by
the mentioned user). Every minute, CrowdCast processes
thousands of Twitter social actions relating to YouTube
videos. At any point in time, thousands of different, specific
YouTube videos are in active discussion on Twitter. Crowd-
Cast monitors this global discussion, tracking those videos
displaying an early indication of viral spread, and outputs a
rank order of those videos most likely to go viral soon.

Processing Streaming Tweets CrowdCast opens a TCP
connection to Twitter’s public API. Asynchronously, Twit-
ter pushes randomly-sampled tweets with JSON-formatted
metadata. For each, CrowdCast checks: (1) for original con-
tent (is retweet = false); otherwise, if it is a retweet/reply
and from whom (retweet status.user, in reply to status id);

(2) for others to whom the tweet is directed (who is men-
tioned?) (entities); and (3) for another user which actually
wrote the tweet (contributors).3

Next, CrowdCast processes the natural language text of
the tweet content. Often, tweets describing a YouTube video
will contain a direct hyperlink to watch the video. When
present, CrowdCast parses these URLs4 to extract an al-
phanumeric code representing a specific YouTube content
ID (video id). In cases where an explicit URL has been omit-
ted, we apply bag-of-words classification on the text content
to infer a likely YouTube content ID (observed by Crowd-
Cast in the recent past). We describe the process of auto-
matic training and classification in the next subsection.

Third, CrowdCast consults the analytic cache to retrieve
the influence score corresponding to the originator of the so-
cial action. This score characterizes the impact of the action
in extending the reach of the video, both in terms of video
viewership and in subsequent Twitter activity.

CrowdCast completes the tweet processing by recording
one or more entries into an HBase activity graph table based
on (1) the extracted JSON metadata, (2) the explicit or in-
ferred video id, and (3) the influence score corresponding to
the source of the tweet or other social action. Each row in the
table denotes an edge in a user-to-user social action graph
for a particular video. The key of each row is the video id.
The value denotes the edge, represented as the four-tuple
<source, destination, type, weight>: (1) source: the user ID
of the corresponding to the Twitter account taking the social
action; (2) destination: the user ID to whom the social ac-
tion is directed (in the case of a regular tweet, a loopback to
the source is used); (3) type: the kind of social action (tweet,
retweet, reply, mention, or contribution); and (4) weight: the
PageRank score as retrieved from the analytic cache table.

Inference from Tweet to Video CrowdCast applies two
complementary processes to infer the relevant video for a
particular natural language tweet, automated training and
classification. For every video-related tweet, one of two con-
ditions hold, the tweet is labeled or unlabeled: (1) labeled
tweets contains the specific YouTube URL of the video, and
directly provide the video id, while (2) unlabeled tweets re-
quire that the relevant video id must be inferred from the
natural language content, selecting from the set of other
videos in active discussion on YouTube. Each tweet, labeled
or unlabeled, passes through Vowpal Wabbit, a streaming
tool for machine learning classification. Labeled tweets con-
tribute to online training of the classifier; unlabeled tweets
are classified online. Vowpal Wabbit’s multi-class, bag-of-
words classification algorithm assumes a fixed number of
to-be-inferred classes (smaller numbers of classes improve
accuracy). Accordingly, CrowdCast continuously maintains
a bounded-size set of the most tweeted video id values
within a moving time window. Labeled tweets (and thus in-
ferred labels) are filtered to membership in this set. Figure 2
plots video classification accuracy through standard cross-
validation on labeled tweets (after removing the URL).

3Twitter contributors are listed for official communication of a
business or other entity but authored by a third-party account.

4Twitter’s API expands shortened URLs to original full form.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Pr
op

or
tio

n
of

 M
ap

pi
ng

 A
cc

ur
ac

y
 R

es
ul

ts

Mapping Accuracy

Top 1000
Top 500
Top 100

Top 50

Figure 2: Classifier precision during cross-validation, map-
ping (de)labeled tweets to YouTube videos. Top X value
refers to the maximum unique video ids considered as clas-
sifier labels (videos of popularity rank > X excluded).

Vowpal Wabbit is able to train and classify online, and
is thus compatible with CrowdCast’s constant-time critical
path. Vowpal Wabbit’s performance is IO, not computation-
ally, bound, and is thus extremely quick per tweet. However,
there are startup and shutdown costs to the process invoca-
tion. For example, upon termination after one or more train-
ing inputs, Vowpal Wabbit must persist its in-memory classi-
fication model. Consequently, for performance optimization,
it is most sensible to run Vowpal Wabbit in batches. Accord-
ingly, CrowdCast buffers incoming labeled and unlabeled
tweets in HBase tables. Periodically (every few minutes),
CrowdCast pulls and clears the unprocessed queue, initiat-
ing a Hadoop job sequence — first processing labeled tweets
to update the classification model, then inferring labels for
unlabeled tweets. With only limited batching, CrowdCast
achieves total training-plus-labeling processing latency av-
eraging 0.063 ms per tweet, throughput of 950K per minute.

Twitter Activity Graph (each video)
HBase’s support for ordered keys and versioning enables ef-
ficient retrieval of all Twitter activity relating to a particular
video. With the table as constructed above, all activity relat-
ing to a particular video will be stored in a contiguous por-
tion of a file written into HDFS, typically will be managed
by a single HBase virtual machine, and during retrieval, will
benefit from large cache blocks. Moreover, since each en-
try utilizes the same key (video id) with multiple versions,
HBase maintains entries about the same video in chrono-
logical order. Ultimately, a time series analysis may be con-
ducted simply as a single-pass, sequential processing on a
continuous chunk of an HDFS file. HDFS is specifically op-
timized to support such operations at high throughput.

The continuous process of per-tweet HBase insertions
logically defines large-scale, continuously evolving graph
structures for each video (Figure 3). For a particular video
with a nontrivial quantity of social activity, the correspond-
ing graph structure may have evolved in one of two different
forms: star-like or tree-like. (1) In star-like graph structures,
a single or small number of users tweet, and those tweets
are received by may users (broadcast effect). However, the

YouTube
Video ID

Tweet1

Tweet2

Timeline

Retweet

Reply

Mention

Retweet

Favorite

0 1 2 3 4 5 6 7 8 9 10 11 12

Contribute

Figure 3: Twitter activity graph constructed for a single viral
video. Note the tree-like structure expanding over time.

tweets are not retweeted or further shared, and the topic
activity quickly subsides. (2) In tree-like graph structures,
when users tweet about a topic, the content is retweeted,
replied or mentioned frequently, by a substantial proportion
of recipients. The topic disseminates across many users and
propagates through multiple “generations” of sharing activ-
ity (recognizable as a tree structure with greater depth).

Note that through content-based addressing (video id as
HBase key value), CrowdCast constructs tweet activity
graphs about the same video emerging from completely in-
dependent sources. We do not expect the arbitrary graph to
be fully star-like or tree-like. Instead, CrowdCast quantifies
each video’s graph structure on a continuum, based on the
average path length between all connected node pairs in the
graph. Simply, the most tree-like structures (those that have
the greatest average path length) appear most viral.

Computing Average Path Length CrowdCast quantifies
a live Twitter activity graph as star-like or tree-like based on
its all-pairs average path length. Longer average path lengths
imply tree-like structure. Exact average path length may be
computed through the Θ(|V |3) Floyd Warshall algorithm or
the O(|V |2 log |V | + |V ||E|) Johnson’s algorithm for all-
pairs shortest path, followed by a simple arithmetic mean.5
However, neither technique is computationally feasible for
processing our Twitter activity graphs live; makespan across
all graphs (one for each of≈ 500 videos) would be measured
in hours. We describe next how CrowdCast applies a fast
estimation heuristic, achieving a three orders of magnitude
speedup, as shown by the log-scale CDF plot in Figure 4.

Average Path Length Heuristic No general average path
length heuristics exists, but it can be effectively estimated
for scale-free graphs. A scale-free graph is defined as having
a degree distribution following a power law: P (x) ∝ x−β ,
where P (x) is the fraction of nodes having degree x. Recent
work in (Clauset, Shalizi, and Newman 2009) proposes a
method to estimate power-law distribution parameters β and

5Let V and E denote the sets of vertices and edges, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

Pr
op

or
tio

n
of

 D
el

ay
 R

es
ul

ts

Delay in Milliseconds

Heuristic
Floyd Warshall

Johnson's

Figure 4: Comparing performance of CrowdCast’s average
path length heuristic versus the Johnson and Floyd War-
shall algorithms for all-pairs shortest path. Empirically for
our relatively-sparse (vertex dominated) graphs, we find that
scalar overheads in Johnson’s algorithm diminish runtime
performance below Floyd Warshall, despite an asymptotic
theoretic complexity advantage — O(|V |2 log |V |) versus
Θ(|V |3) — O(|V ||E|) term is irrelevant in sparse graphs.
Regardless, our linear θ(|V |) heuristic is three orders of
magnitude faster than either, in both theory and practice.

��

����

����

����

����

��

�� �� �� �� �� ���
��
�
�
��
��
�
��
��
�
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�

������������������

Figure 5: β distribution for activity graphs. For 2 < β < 3
(≈ 65%), average path length may be estimated accurately.

minimum value xmin from empirical data.6 Accordingly, we
leverage the authors’ reference implementation to estimate
β for a large set of activity graphs. Figure 5 shows the dis-
tribution of activity graph β values for all observed videos.
For ≈ 65% activity graphs, 2 < β < 3. Average path length
may be estimated when β ≥ 2 (Albert and Barabási 2002):

davg =

no formulation exists, β < 2

const, β = 2

ln(ln(N))

ln(β − 1)
, 2 < β < 3

ln(N)

ln(ln(N))
, β = 3

ln(N), β > 3

6xmin denotes a lower bound for power-law distribution param-
eter x such that power-law behavior still holds.

As shown in Figure 6, we find empirically that in our Twit-
ter activity graphs, the standard formulation for average path
length estimation works well for 2 < β < 3 and poorly for
β > 3 (no formulation exists for β < 2). Therefore, we esti-
mate average path length only for the dominant 2 < β < 3
regime, roughly 65% of cases — for which estimation error
is less than 25% in 95% of graphs. For all others, we apply
the Floyd Warshall algorithm, with performance as shown in
Figure 4 and complexity Θ(|V |3).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

Pr
op

or
tio

n
of

 V
id

eo
s

Percentage Error

β between 2 and 3
β more than 3

Figure 6: Average path length estimations using theory of
scale-free graphs. When 2 < β < 3, estimation proves suf-
ficiently accurate, but we avoid the formulation for β > 3.

Evaluation
We validate CrowdCast’s accuracy for a month using Twit-
ter’s freely-provided 1% tweet sample stream. We filter
tweets to a list of video-related keywords or those containing
a YouTube link directly.7 Remaining tweets pass through our
processing pipeline, as described above. Strictly for evalua-
tion purposes, we continuously poll YouTube APIs to track
viewership for videos in CrowdCast’s consideration. Peri-
odically, we sample and record CrowdCast’s top 500 “pre-
dicted viral” videos. As we describe next, ground truth is
only revealed later through “post-mortem” analysis.

Quantifying Virality In the YouTube context, CrowdCast
attempts to determine which videos will become viral in the
next hours. We consider a viral event to have occurred only
when a video experiences an explosive increase in viewer-
ship over a short duration (less than 24 hours). Trivially, one
could predict a video to become viral as its viewership ap-
proaches some threshold to become “viral enough.” Instead,
we only consider predictions of a 500-fold increase in popu-
larity. Specifically, CrowdCast makes predictions for videos
with a total current viewership less than 1000, and predicts
whether they will hit 500,000 views in the next 24 hours.

Compared Techniques We evaluate CrowdCast’s heuris-
tic in conjunction with two alternative formations. Node-

7These tweets may be written in any language. We have suc-
cessfully tested (but do not use for our evaluation) a language in-
ference heuristic to filter to only English language tweets. Heuristic
based on an empirical histogram of character frequency counts.

Count tracks the overall level of social activity about a par-
ticular video, ignoring the activity graph structure. Aver-
ageDistance considers the activity graph structure in isola-
tion, but without quantifying the level of activity. Crowd-
Cast combines these notions with PageRank scoring from
the analytic cache. For a fixed activity level, a low aggregate
PageRank implies that the activity represents a peer-to-peer
(viral) information dissemination, rather than a celebrity en-
dorsement. We use this scoring to complement the similar
notion of AverageDistance. Aggregated inverted PageRank,
however, is more unstable and performs poorly in isolation,
thus is only shown through its contribution to CrowdCast.
NODECOUNT simple metric on tweet activity, ranks videos

in descending order by vertex count in the activity graph.
AVERAGEDISTANCE ranks videos in descending order of

average path length in the activity graph.
CROWDCAST ranks videos in descending order by:

NODECOUNT · AVERAGEDISTANCE∑
∀i pi

where pi denotes the PageRank of activity graph vertex i.

Summary of Collected Data and Results8

initial video views (included in results) ≤ 1,000
video views to be “viral” (o/w “non-viral”) ≥ 500,000
“viral” proportional viewership increase ≥ 500x
duration of influence data collection 120 days
Twitter REST API rate limit (per acct.) 15 / min
Twitter REST API calls 3.5M
vertices in influence graph 131.3M
edges in influence graph 1.69B
duration of tweet processing 30 days
mean rate of tweets (1% sample) 2466 / min
tweets (all languages, filtered) 54M
% tweets in English 48.9%
tweets related to videos 16.6M
unique videos linked in tweets 3.2M
videos with viewership < 1000 1.1M
videos with viewership > 500K 1036
median time-to-viral (1K to 500K views) 366 hours
% viral 0.096%
overall CrowdCast precision 0.225
overall CrowdCast recall 0.537
overall CrowdCast F-measure 0.309
overall CrowdCast fallout (lower is better) 0.00149
respective standard deviations 0.053, 0.096,

0.054, 0.0095

Precision, Recall, Fallout, and F-Measure Let Y be be
the set of all YouTube videos observed from the content of
Twitter tweets. Let V ⊂ Y be the set of YouTube videos that
actually “go viral” (at least 500x increase in viewership). Let
P ⊂ Y be the set of YouTube videos predicted by Crowd-
Cast to go viral. Then, V \P denotes CrowdCast’s false neg-
ative predictions, P \ V denotes CrowdCast’s false positive

8All figures approximate, subject to insignificant cloud down-
town and maintenance interruptions.

predictions, and Y \ V denotes the set of videos which did
not go viral. We evaluate CrowdCast’s prediction efficacy by
the following standard metrics of information retrieval:

PRECISION =
|V ∩ P |
|P |

prop. of predicted viral that are viral

RECALL =
|V ∩ P |
|V |

prop. of viral that are predicted viral

FALLOUT =
|(Y \ V) ∩ P |
|(Y \ V)|

prop. of non-viral yet predicted viral

F-MEASURE =
2 · PRECISION · RECALL

PRECISION + RECALL
harmonic mean of precision and recall

We sample CrowdCast’s performance as 30 independent
trials, one for each day (00:00 AM–11:59 PM) of one month.
At midnight of each day, we sample CrowdCast’s prediction
of the (max) 500 videos it projects as most likely to become
viral in the next 24 hour period. From these 500, we filter out
any videos with more than 1000 YouTube views. 24 hours
later, the subset of these videos with greater than 500,000
views are CrowdCast’s true positive results and the remain-
ders are false positives (reduce Precision). Any other videos
meeting the both the 1000 and 500,000 requirement are con-
sidered false negatives (reduce Recall, F-Measure). Any re-
maining videos meeting the 1000 requirement are true neg-
ative results (improving Fallout). Figure 7 plots CDFs.

Figures 8(a,b) reflect the strong correspondence between
the virality of videos and activity on Twitter. Figure 8(a)
shows that viewership on YouTube changes rapidly, on small
time scales (few hours). As evident, most of the videos do
not become viral, receiving less than 100,000 views. Fig-
ure 8(b) shows the corresponding activity on Twitter for
the same videos. Our result confirm previous studies Most
videos (≈ 70%) do not receive any social action (beyond a
single initial tweet). Intuitively, the likeliness of receiving
one or more social actions increases with longer durations.
For videos receiving more than 10 social actions, our CDF
curve flattens, reflecting that it may receive many future ac-
tions – becoming “viral-like.”

Figure 9 compares the increase in YouTube viewership of
predicted-viral videos to that of true-viral videos.

Figure 10 shows the distribution of time-to-viral taken by
all videos receiving eventual viewership more than 500K.
While 25% of videos become viral within one week, some
become viral within 4 hours – confirming the importance of
timeliness in virility prediction, such as CrowdCast enables.

Figure 11 plots Twitter users’ self-reported timezones. Vi-
sually evident, EST, CST, and Central Europe are promi-
nent, reflecting strong daily seasonality effects in world-
wide Twitter usage. We design CrowdCast for elastic cloud
deployment; substantial infrastructure cost savings may

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
��
�
�
��
��
�
��
��
�
��
�
��
��
�
��
�
�
�
��
�

���������

���������������
���������
���������

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
��
�
�
��
��
�
��
��
�
�
�
�
���
�
�
�
�
��
�

������

���������������
���������
���������

��

����

����

����

����

��

�� ������� ������ ������� ������ ������� ������

�
��
�
�
��
��
�
��
��
�
�
���
�
��
�
�
�
�
��
�

�������

���������������
���������
���������

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
��
�
�
��
��
�
��
��
�
��

�
�
�
�
��
��
�
�
�
��
�

���������

���������������
���������
���������

Figure 7: CDFs showing that CrowdCast predicts about 50% of the videos which actually become viral (b: RECALL), with about
two false positives for every true positive (a: PRECISION), only predicting 0.12% of non-viral videos as viral (c: FALLOUT).

��

����

����

����

����

��

��
�

��
�

��
�

��
�

��
�

��
�

�
��
�
�
��
��
�
��
��
�
��
�
�
�

������������������������������

���������
���������
����������
����������
����������

�����

����

�����

����

�����

����

�����

��

��
�

��
�

��
�

�
��
�
�
��
��
�
��
��
�
��
�
�
�

�������������������������

�������
�������
�������
�������
�������

Figure 8: Distribution of video virality, plotted by time since
first detected Tweet: (a) viewership of YouTube videos men-
tioned on Twitter; (b) Twitter social actions taken on videos.

��

����

����

����

����

��

��
�

��
�

��
�

��
�

�
��
�
�
��
��
�
��
��
�
��
�
�
��
�
��
��
�
�
�
��
�

������������������������������

������
���������

Figure 9: Viewership change, actual/predicted-viral videos.

be achieved by automatically provisioning/deprovisioning
cloud virtual machine instances per need.

Conclusion
While voluminous prior art has demonstrated the predictive
power of social forecasting, the promises of existing tech-
niques are offset by substantial practical caveats. We pre-
set CrowdCast, a software framework to bridge sophisti-
cated social analysis with the utility of real-time systems.
CrowdCast monitors a stream of Twitter activity, leverages
large-scale graph analysis, invokes online machine learning,
and applies low-complexity graph heuristics to output live
prediction of soon-to-occur viral events. While we evalu-
ate our techniques in the context of viral videos, we believe

��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ����

�
��
�
�
��
��
�
��
��
�
��
�
�
�

������������������

Figure 10: Plot showing distribution of video time-to-viral
(no 24 hour time constraint; videos not eventually reaching
our 500K viewership threshold for virality excluded).

 0

 2

 4

 6

 8

 10

 12

 14

-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10111213

Pe
rc

en
ta

ge
 o

f
Tw

ee
ts

Timezone (relative to GMT 00:00)

Figure 11: Twitter activity by self-reported timezone (user
profile), for reference note: -5 (New York), +1/+2 (Europe).

that CrowdCast’s system design can be applied more gen-
erally across domains. Thus, CrowdCast leaves open broad
avenues for research in integration of complementary ana-
lytic techniques and in pursuit of alternative inference goals.

References
Agarwal, S. 2009. Social networks as internet barometers for
optimizing content delivery networks. In ANTS. IEEE.
Albert, R., and Barabási, A.-L. 2002. Statistical mechanics of
complex networks. Reviews of modern physics 74(1):47.
Allocca, K. 2012. Kevin allocca: Why videos go vi-
ral. http://www.ted.com/talks/kevin_allocca_
why_videos_go_viral.html.
Bao, X.; Gowda, M.; Mahajan, R.; and Choudhury, R. R. 2013.
The case for psychological computing. In HotMobile. ACM.
Berger, J. A., and Milkman, K. L. 2009. What makes online
content viral? Available at SSRN 1528077.
Broxton, T.; Interian, Y.; Vaver, J.; and Wattenhofer, M. 2010.
Catching a viral video. In ICDMW. IEEE.
Cha, M.; Haddadi, H.; Benevenuto, F.; and Gummadi, P. K.
2010. Measuring user influence in twitter: The million follower
fallacy. ICWSM 10:10–17.

Clauset, A.; Shalizi, C. R.; and Newman, M. E. 2009. Power-
law distributions in empirical data. SIAM review 51(4):661–
703.
Dong, A.; Zhang, R.; Kolari, P.; Bai, J.; Diaz, F.; Chang, Y.;
Zheng, Z.; and Zha, H. 2010. Time is of the essence: improving
recency ranking using twitter data. In WWW. ACM.
GNIP. 2014. GNIP: The Social Media API. http://gnip.
com/twitter/decahose/.
Goel, S.; Watts, D. J.; and Goldstein, D. G. 2012. The structure
of online diffusion networks. In EC. ACM.
Guerini, M., and Strapparava, C. 2011. Exploring text virality
in social networks. In ICWSM.
Hoang, T.-A., and Lim, E.-P. 2012. Virality and susceptibility
in information diffusions. In ICWSM.
Kwak, H.; Lee, C.; Park, H.; and Moon, S. 2010. What is
twitter, a social network or a news media? In WWW. ACM.
Lerman, K., and Hogg, T. 2010. Using a model of social dy-
namics to predict popularity of news. In WWW. ACM.
Li, R., et al. 2012. Towards social user profiling: unified and
discriminative influence model for inferring home locations. In
SIGKDD. ACM.
Malewicz, G.; Austern, M. H.; Bik, A. J.; Dehnert, J. C.; Horn,
I.; Leiser, N.; and Czajkowski, G. 2010. Pregel: a system for
large-scale graph processing. In SIGMOD. ACM.
Mathioudakis, M., and Koudas, N. 2010. Twittermonitor: trend
detection over the twitter stream. In SIGMOD. ACM.
Morstatter, F.; Liu, H.; and Carley, K. M. 2013. Is the sample
good enough? comparing data from twitter’s streaming api with
twitter’s firehose.
Sakaki, T.; Okazaki, M.; and Matsuo, Y. 2010. Earthquake
shakes twitter users: real-time event detection by social sensors.
In WWW, 851–860. ACM.
Shamma, D. A.; Yew, J.; Kennedy, L.; and Churchill, E. F. 2011.
Viral actions: Predicting video view counts using synchronous
sharing behaviors. In ICWSM.
Szabo, G., and Huberman, B. A. 2010. Predicting the popular-
ity of online content. Comm. of the ACM 53(8):80–88.
Topsy. 2014. Twitter search, monitoring, & analytics. http:
//topsy.com.
Twitter blog. 2013. Maximum tweer per sec-
ond. https://blog.twitter.com/2013/
new-tweets-per-second-record-and-how.
UnrulyMedia. 2013. Unruly sharerank. http://www.
unrulymedia.com/socialvideolab.
Wallsten, K. 2010. “yes we can”: How online viewership, blog
discussion, campaign statements, and mainstream media cover-
age produced a viral video phenomenon. Journal of Informa-
tion Technology & Politics 7(2-3):163–181.
Weng, J.; Lim, E.-P.; Jiang, J.; and He, Q. 2010. Twitterrank:
finding topic-sensitive influential twitterers. In WSDM. ACM.
Zaman, T. R.; Herbrich, R.; Van Gael, J.; and Stern, D. 2010.
Predicting information spreading in twitter. In Workshop on
Computational Social Science and the Wisdom of Crowds,
NIPS, volume 104, 17599–601. Citeseer.

