You Driving? Talk to you later

Hon Lung Chu, Vijay Raman, Jeffrey Shen, Romit Roy Choudhury

Duke University

Aman Kansal, Victor Bahl
Microsoft Research

Driver Detection System (DDS)

Design a sensing system to determine if the mobile phone user is in a vehicle as a driver or passenger.

Motivation

☐ People spent significant time traveling in cars

- US: 86 min/dayEurope: 43 min/day
- ☐Attention-based notification and delivery is crucial for user experience and safety
- □Potential applications:
- Attention-based notifications (e.g. phone calls, text messages)
- Carbon footprint logging
- ■Reckless driving detection
- ■Teen trainer mileage logger

Challenges

■ Phone Locations:

- ■No additional hardware sensors
 - ■Software only solution
- □Unknown phone location
- System must adapt to user
- □Unknown phone orientation
- Distorts accelerometer data
- □Limited energy availability
 - Continuous sensing not possible

DDS Solution Design

- □ Detection and comparison of multiple short-lived microsignatures using
 - Accelerometer
 - Gyroscope
 - Compass
 - ■Microphone
- Left-vs-Right and Front-vs-Back■ Driver is the Front Left user

DDS Solution Design

☐ Gyroscope trace of lower-body pocket car entry signature

☐ Combinations of distinct signatures allows for unique ID

Signatures

- □Left vs. Right Signatures
 - Car Entry (Lower Body Pocket)
 - ■Inner foot signature caused by motion of stepping into the car.
- ■Seat Belt (Upper Body Pocket)
 - •Driver's upper body rotates from left to right to buckle in seat belt. Passenger goes through the opposite motion.
- Audio (Handbag)
- ■See Front vs. Back Audio in next column.

Signatures (cont'd)

- ☐ Front vs. Back Signature
- Audio Comparison
 - ■Based on magnitude comparison of turn signal clickers.

Preliminary Results

□ Support Vector Machine Classifications of Signatures □ Car Entry Results:

□Summary of accuracies:

	Left Vs.	Front vs.
	Right	Back
	Algorithm	Algorithm
Trouser	88.99%	95.83%
Pocket		
Upper Body	91.08%	95.83%
Pocket		
Handbag	87.50%	95.83%

Power Consumption

- ☐ Typical episode takes 155J, or 1.1% of a 1000 mAh battery.
 - ■If users walk to their car 5-10 times a day, expect a 5-15% decrease in battery life.

Ongoing Work

- ☐Build larger micro-signature databases with hundreds of users
- □Improving audio algorithms■Comparison requires cloud server
- communication
- □Reorient accelerometer
 - Allows for detection regardless of phone orientation