
SourceSync: A Distributed Wireless Architecture for
Exploiting Sender Diversity

Hariharan Rahul, Haitham Hassanieh, and Dina Katabi
Massachusetts Institute of Technology

ABSTRACT

Diversity is an intrinsic property of wireless networks. Recent years

have witnessed the emergence of many distributed protocols like

ExOR, MORE, SOAR, SOFT, and MIXIT that exploit receiver diver-

sity in 802.11-like networks. In contrast, the dual of receiver diversity,

sender diversity, has remained largely elusive to such networks.

This paper presents SourceSync, a distributed architecture for har-

nessing sender diversity. SourceSync enables concurrent senders

to synchronize their transmissions to symbol boundaries, and co-

operate to forward packets at higher data rates than they could

have achieved by transmitting separately. The paper shows that

SourceSync improves the performance of opportunistic routing proto-

cols. Specifically, SourceSync allows all nodes that overhear a packet

in a wireless mesh to simultaneously transmit it to their nexthops, in

contrast to existing opportunistic routing protocols that are forced to

pick a single forwarder from among the overhearing nodes. Such si-

multaneous transmission reduces bit errors and improves throughput.

The paper also shows that SourceSync increases the throughput of

802.11 last hop diversity protocols by allowing multiple APs to trans-

mit simultaneously to a client, thereby harnessing sender diversity.

We have implemented SourceSync on the FPGA of an 802.11-like

radio platform. We have also evaluated our system in an indoor

wireless testbed, empirically showing its benefits.

Categories and Subject Descriptors C.2.2 [Computer Sys-

tems Organization]: Computer-Communications Networks

General Terms Algorithms, Design, Performance

1 Introduction

Diversity across nodes is an intrinsic property of wireless networks.

The wireless environment exhibits both receiver diversity and sender

diversity. Receiver diversity is the property that a single transmitted

packet traverses different channels to different receivers, and hence

is unlikely to suffer fading at all receivers at the same time. Sender

diversity, on the other hand, is the property that a packet transmitted

simultaneously from multiple senders traverses different channels

to the same receiver, and hence is unlikely to suffer fading from all

senders at the same time. In the context of 802.11 networks, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM 2010, August 30–September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 . . . $5.00.

ability to have multiple transmitters simultaneously forward a packet

to a receiver can harness both frequency diversity and power gains.

Specifically, 802.11 channels span a relatively wide bandwidth (20–

40 MHz), where different senders experience deep fading in different

frequencies. Enabling multiple transmitters to simultaneously for-

ward a packet to a receiver ensures that no frequency is deeply faded

at the receiver, and reduces the overall bit error rate for a particular

transmission power. Second, simultaneously forwarding a packet

enables senders to combine their transmission power and thereby

deliver a higher SNR to the receiver, as compared to a single sender.1

Despite the benefits of simultaneous forwarding from multiple

transmitters, existing approaches for sender diversity in 802.11 net-

works restrict themselves to only one sender transmitting at a time,

using mechanisms like picking the sender with the best channel [26].

This is in sharp contrast to receiver diversity where many practical sys-

tems like ExOR, MORE, SOAR, SOFT, and MIXIT [4, 5, 31, 44, 19]

leverage simultaneous reception across multiple receivers.

Simultaneous transmission from multiple senders has challenged

802.11 for three main reasons.

• First, senders need to be synchronized to the symbol level in order

that their signals combine on the medium in a manner that reduces

the overall packet error rate. Such fine-grained transmitter synchro-

nization is difficult to achieve in a distributed manner, as has been

observed by past research [9, 18, 13, 30]. The difficulty arises

because the different transmitters need to time their transmissions

so that they are synchronized accurately (to within tens of ns) [9]

at the receiver. In the absence of a shared clock or a central con-

troller, the only mechanism for synchronization is for senders to

use packet reception as a reference. However, such a mechanism

requires transmitters to compensate for differences in propagation

delays, and hardware turnaround times from reception to transmis-

sion. These measurements are challenging because a node does

not detect packet reception at the exact instant when the signal

arrives at its antenna, but rather incurs a random delay depending

on the noise in the environment and the receiver hardware. This

variability is usually on the order of hundreds of ns [42], which is

too high for accurate symbol-level synchronization.

• Second, the received signal is a combination of signals from multi-

ple senders. Each of these signals has traversed a different path,

and has hence experienced a different channel. One might think

that the receiver could compensate for the channel distortion of

the composite signal in the same manner as it would compensate

for the channel distortion of a signal from a single sender. Unfor-

tunately, this approach does not work since the composite channel

has fundamentally different characteristics from single sender-

receiver channels. Specifically, unlike single sender-receiver chan-

nels, which have a constant attenuation throughout a packet, the

attenuation of the composite channel varies even within a single

packet. This is because the oscillators of different senders naturally

1The FCC limits the maximum transmission power of a single sender, and combining
transmissions therefore increases the maximum received power.



have slightly different operating frequencies, and hence the signals

from different senders continuously rotate relative to each other.

• Finally, transmitted signals are complex numbers which have

phases. Unless these signals are carefully orchestrated at the

senders, they can add up constructively, enhancing each other,

or destructively, weakening each other.

This paper introduces SourceSync, a practical architecture for

harnessing sender diversity. SourceSync is designed for OFDM,

which is the transmission scheme for most modern wireless networks,

including 802.11 a/g/n, WiMax, LTE etc. SourceSync has three

components that harness sender diversity in a distributed manner:

Symbol Level Synchronizer (SLS). SourceSync has a distributed

synchronization algorithm that leverages packet reception as a time

reference, computes robust estimates of the propagation delays from

all senders to the receiver, as well as hardware turnaround times at

each of the senders, and compensates for these delays at the senders

prior to transmission, in order to ensure that the packets arrive syn-

chronized at symbol boundaries at the receiver. The key feature that

allows SourceSync to achieve tight synchronization is that it can

prevent the inherent variability in packet detection from inducing

variability in its propagation delay and turnaround time estimates.

SourceSync has a mechanism that allows it to accurately measure

the delay between the first sample of a packet and when the receiver

detects that packet, and account for the delay when computing its

estimates. Further, SourceSync can leverage data packets to track

changes in propagation delay over time, and hence keep senders

synchronized without the need for active measurements.

Joint Channel Estimator (JCE). A SourceSync receiver decodes

the combined signal from multiple synchronized senders. However,

SourceSync differs from prior schemes, where transmitted signals

interfere, and hence decoding the signals either requires multiple

transmissions from each sender, as in ZigZag [13], or a large differ-

ence in power (or code rate) between them, as in Successive Interfer-

ence Cancellation [14, 40]. In contrast, SourceSync does not need

to treat senders as interfering, and can decode a single simultaneous

transmission from multiple senders, even when they have comparable

powers. It estimates the individual channels from each sender, com-

putes how they interact to create the composite channel, and tracks

the variations of the composite channel through the combined packet.

Smart Combiner (SC). Since signals from multiple senders rotate

continuously relative to each other, naively transmitting the same

packet from all senders will cause the signals to combine destruc-

tively at some points within the packet. Therefore, senders need to

have a joint strategy for manipulating the phase of the signal prior to

transmission to ensure that their transmitted codewords do not com-

bine destructively. SourceSync leverages the rich body of research

on space-time block codes [39, 2, 16], which are typically used in

MIMO systems to control how signals from different antennas on a

single transmit node combine at a receiver. In contrast to MIMO sys-

tems, however, SourceSync uses these codes in a distributed manner

across multiple transmit nodes.

We use SourceSync to develop the following two protocols.

1.1 Combining Sender Diversity with Opportunistic

Routing

Opportunistic routing protocols leverage receiver diversity; they ex-

ploit the fact that since wireless receptions are probabilistic, it is

unlikely that all nodes closer to the destination are unable to receive

a packet, as shown in Fig. 1(a). Protocols like ExOR, MORE, SOAR,

�

�

���� ��	

AB��CDAEF�� AB��CDAEF��

��	 ��	

��	

�

�
����E���D

�E����E	CD

��	

�

�

���� ��	

AB��CDAEF�� AB��CDAEF��

��	

��	

��	

�

�
����E���D

�E����E	CD

��F���D

�E����E	CD
��	

(a) First-hop receiver diversity (b) Second hop sender diversity

Figure 1: Opportunistic routing with sender diversity.

SourceSync enables multiple forwarders to transmit jointly to the

destination.

������

���	A�B

���
���

����	A

������

���	A�B

���
���

����	A

C�DEF����AE��

�D��

(a) Uplink receiver diversity (b) Downlink sender diversity

Figure 2: Last-hop with sender diversity. SourceSync enables

multiple APs to transmit jointly on the downlink.

and MIXIT therefore allow any downstream node that receives a

packet to forward it to the destination. However, none of these

schemes take advantage of the analogous opportunity of sender diver-

sity presented by the fact that multiple nodes often receive the same

packet. SourceSync complements the opportunistic receptions ex-

ploited by current protocols with opportunistic synchronous transmis-

sions by multiple forwarders. Specifically, since multiple forwarders

are likely to receive a packet, they can transmit it simultaneously as

shown in Fig. 1(b). This provides two types of gains. First, since

different forwarders experience fades in different frequencies [30],

joint transmission reduces the likelihood that a frequency experiences

a deep fade at the receiver, and hence decreases the overall bit error

rate. Second, since joint transmission allows forwarders to combine

their power, it improves the receiver SNR, and thereby its bit rate.

1.2 Combining Sender Diversity with Last-hop Receiver

Diversity

Protocols like MRD, SOFT and Link-Alike [25, 44, 17] all exploit

different aspects of the same concept: last-hop diversity. Consider,

for example, a sender that has poor connectivity to multiple nearby

APs. A transmitted packet is unlikely to reach any specified AP, but

is likely to be received by at least one AP. All the above protocols

exploit this receiver diversity by allowing APs to combine received

bits or packets over the wired network, and hence can increase uplink

reliability without any retransmissions, as shown in Fig. 2(a). How-

ever, none of these schemes can similarly address a lossy downlink

without expending medium time on retransmissions. SourceSync

complements all these protocols by harnessing sender diversity to

increase downlink reliability without any retransmissions, analogous

to existing receiver diversity mechanisms on the uplink. Specifically,

instead of requiring that a client receive packets from only one AP

at a time, in SourceSync, multiple neighboring APs can transmit

simultaneously to the client as in Fig. 2(b), and increase throughput.



1.3 Results

We implemented SourceSync on the FPGA of the WiGLAN radio

platform [10]. We also implemented proofs of concept of both last-

hop diversity, and opportunistic routing with sender diversity. Results

from an indoor wireless testbed reveal the following:

• SourceSync’s symbol level synchronization is accurate. Testbed

evaluations show that two randomly chosen transmitters using

SourceSync have a 95th percentile synchronization error of at

most 20 ns across the range of operational SNRs of 802.11.

• SourceSync increases the gains of opportunistic routing by exploit-

ing sender diversity. Evaluating across multiple deployments with

different bitrates and link loss rates, we show that the combination

of SourceSync and ExOR achieves a median throughput gain of up

to 45% over ExOR alone, and up to 2× over single-path routing.

• SourceSync is effective in harnessing last-hop sender diversity.

Specifically, by having two APs transmit simultaneously to a client,

SourceSync provides a median throughput gain of 57%. This is

because the higher power resulting from simultaneous transmission

from APs allows the combined transmission to use a higher 802.11

rate than a transmission by either AP alone.

1.4 Contributions

This paper makes the following contributions:

• It demonstrates via a design, implementation and testbed evalua-

tion the practicality and benefits of simultaneous transmission in

802.11 networks.

• It presents a distributed algorithm for symbol level synchronization

and an empirical study of its accuracy.

• It reveals the synergy between opportunistic routing and sender

diversity by showing that opportunistic receptions can be further

used to enable concurrent forwarding to downstream nodes.

2 Related Work

Sender diversity was pioneered by Laneman and Wornell’s work on

cooperative diversity, which theoretically demonstrated the gains of

spatially diverse senders cooperating to relay information [21, 32].

Since then, many papers have analyzed aspects of sender spatial di-

versity focusing on signal processing and coding algorithms at the

relays [35, 20, 33]. These papers focus on theoretical gains, ignore

practical issues such as transmitter synchronization and oscillator

offsets, and do not present a practical working system. Cellular net-

works today attempt to exploit sender diversity using Distributed

Antenna Systems (DAS) [6]. DAS do not allow separate transmitters

to send simultaneously; rather, they consist of a single transmitter

with geographically distributed antennas connected using long, low

attenuation cables. These systems are expensive and inflexible [7],

and hence there is increasing interest in exploiting simultaneous

transmissions from multiple senders in future cellular networks. The

most recent WiMax multihop relay standard [38] includes simulta-

neous transmissions from multiple relays as an optional feature, and

cooperative relays are also being considered for the future 3GPP

LTE-Advanced standards [36]. However, there is no published work

currently demonstrating a practical design and implementation of

simultaneous transmissions for cellular systems, and further these sys-

tems operate under different constraints as they have the benefit of a

centralized scheduler and a shared GPS clocking mechanism. 802.11

networks have also shown interest in exploiting sender diversity; how-

ever they still restrict themselves to only one sender transmitting at a

time, using mechanisms like picking the sender with the best chan-

nel [26], which can neither exploit frequency diversity across senders,

nor the power gain from combining multiple senders. Concurrent

with our work, Zhang et al. [45] have demonstrated an implementa-

tion of cooperative diversity with nodes connected to a single shared

clock. In contrast, our approach requires no shared clocks and applies

to practical wireless networks, and also demonstrates the synergy of

sender diversity with opportunistic routing.

Additionally, there has been recent work on systems that exploit

concurrent transmissions from multiple senders, but cannot provide

any sender diversity gains since they do not synchronize transmissions

at the symbol level. These include systems like SMACK [9] for group

acknowledgments, Message-in-Message [23] for exposed terminals,

interference cancellation [14] and ZigZag [13] for hidden terminals,

and ANC [18] for network coding.

Finally, SourceSync builds on past work on space-time block

codes. These codes are used by different antennas on a single MIMO

transmitter and do not extend to different transmitters due to lack

of synchronization [39, 1, 2, 16], or because of oscillator frequency

offsets [22]. SourceSync addresses synchronization and oscillator

offset issues, showing that these codes can be implemented in a

distributed manner to collect the gains of sender diversity in practice.

3 SourceSync Overview

SourceSync enables multiple senders to concurrently forward a

packet to one or more receivers in order to collect diversity and power

gains. It does so via a fully distributed joint PHY-MAC architecture.

(a) MAC: Medium access for concurrent transmissions is done by

one of the senders, which we call the lead sender. Any node in the

network can be a lead sender for a transmission. The lead sender ac-

cesses the medium via carrier sense, just as in 802.11. When the lead

sender acquires the medium, it transmits a synchronization header.

Other nodes that hear the synchronization header, and have the packet

being transmitted, can then join the lead sender’s transmission.

(b) PHY: The PHY layer ensures that concurrent transmissions are

decodable at their intended receiver(s). It does so using three com-

ponents: (a) a Symbol Level Synchronizer that ensures that trans-

missions from multiple nodes are synchronized, and can be decoded

jointly at the receiver, (b) a Joint Channel Estimator which estimates

the composite channel from the concurrent senders, and compen-

sates for the resulting distortions, and (c) a Smart Combiner that

encodes the concurrent transmissions to ensure that they combine on

the channel in a manner that reduces the error rate at the receiver.

The next few sections describe the PHY in detail. The MAC is a

simple extension of 802.11 carrier sense, and is described in the

specific context of WLANs (§7.1) and opportunistic routing (§7.2).

4 Symbol Level Synchronization

4.1 Why do we synchronize transmitters?

To understand why one needs to synchronize, let us start by explaining

what happens with a single sender-receiver pair. When a sender

transmits to a receiver, the wireless signal bounces off walls, obstacles

etc. and traverses multiple paths to the receiver. This phenomenon,

known as the multipath effect, is a common distortion in wireless

channels such as 802.11. As a result of the multipath effect, different

copies of the same signal arrive at the receiver delayed with respect to

each other. This means that the energy from one symbol bleeds into

the next symbol, and corrupts its signal as shown in Fig. 3. Because



�
�
��
�
�
	
A
B

CD�A

EF�D����C

�D���	���F��

��

�����������

�
�
�
�
�
�

CD�A

���F�D����C�

�D���	

Figure 3: FFT windows at a receiver for a single transmitter.

Any FFT window within the slack is valid. Any other FFT window

would include energy from the previous symbol and hence is invalid.

����������	�A�BC

�DE

�DF

�����

(a) A valid FFT window for aligned transmitters.

���������		A�B�C��D

AEF

AE�

�����

(b) No valid FFT for these misaligned transmitters.

Figure 4: FFT windows at a receiver for two transmitters. In

order to decode both transmissions, the symbols from the transmitters

must arrive at the receiver aligned within the slack of the CP.

of this effect, OFDM symbols typically have a guard interval between

them, called the cyclic prefix (CP). In a typical network, the value

of the CP is chosen to be as small as possible while still accounting

for the maximum multipath delay spread of the network, i.e., the

maximum delay difference between delayed copies of the signal.

OFDM data is encoded in the frequency domain. An OFDM re-

ceiver, in order to decode, converts the received symbol to a frequency

representation by taking an FFT of the symbol. In order to do so

while ensuring that the symbol is not corrupted by multipath noise

from the previous symbol, the receiver should skip the samples in the

CP, and take the FFT of the remaining samples.2 In a typical network,

the CP has a small amount of slack to allow for packet detection

errors [42]. This means that the receiver has a corresponding amount

of slack in the choice of where to align the receiver FFT window

in a symbol. Thus, as shown in Fig. 3, any FFT window within the

slack is valid. Any other FFT window would include energy from the

previous symbol and hence lead to erroneous results.

Now, consider two senders transmitting the same symbol to a

receiver. If the copies of this symbol from the two transmitters arrive

at the receiver aligned within the existing slack of the CP, the receiver

can take the FFT as before while still receiving energy only from this

symbol, as shown in Fig. 4(a). If not, as before, any FFT window

that the sender uses would include energy from the previous symbol,

as shown in Fig. 4(b), and hence would yield incorrect results.

Of course, it is possible to increase tolerance to misalignment and

provide more slack by increasing the CP. This approach, however,

is problematic for two reasons. First, without sender synchroniza-

tion, as in existing 802.11 networks, the amount of misalignment

between senders can take any value depending on the differences

in propagation delays and hardware processing times on different

senders. While propagation delays may be bounded in certain envi-

2Since the CP is a cyclic permutation of the symbol, and since FFT is periodic, the
FFT yields correct results as long as it is within the symbol.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

-40 -20  0  20  40

U
n

w
ra

p
p

e
d

 C
h

a
n

n
e

l 
P

h
a

s
e

Subcarrier Index

Initial Detection
Initial Detection + ∆

Figure 5: Unwrapped channel phase of OFDM subcarriers in a

flat fading channel. The slope is a function of the detection delay.

ronments based on the network diameter, the hardware processing

times can be significantly different across senders. In fact, 802.11

standards [37, 11, 27] impose only very loose bounds on hardware

turnaround times (10 µs in 802.11 a/g/n), and these are far longer

than the 802.11 OFDM symbol time (4 µs). The second problem

with increasing the CP is that the CP is overhead that is incurred for

every OFDM symbol. Hence, the general trend has been to decrease

the CP (for example, 802.11n negotiates down the CP if the network

topology permits it [27]). Thus, even if one can exactly determine the

required increase in the CP, such an approach will increase overhead

and may significantly reduce, or even negate, the gains.

4.2 Delay Measurements for Accurate Synchronization

At a high level, our synchronization algorithm is simple. One of the

senders, called the lead sender, acquires the medium and transmits

the packet. Upon hearing this signal, other nodes, which we refer to

as co-senders, join the transmission. The choice of lead sender for a

transmission depends on context and is explained in §7.

The key, however, is that transmissions from the lead sender and co-

senders arrive aligned at the receiver. The challenge is that co-senders

need to accumulate several samples before detecting the lead sender’s

transmission, and hence do not detect the transmission at the first

sample. Further, different co-senders may take different times to turn

around from receiving the lead sender’s transmission to transmitting

with the lead sender. Finally, signals from different senders traverse

different paths and therefore incur different propagation delays. The

co-senders therefore need to measure these different delays, and

compensate for them to ensure synchronization at the receiver. In

this section, we focus on how to accurately measure the delays, and

describe how we compensate for the delays in the next section.

(a) Packet Detection Delay: This is the offset between the arrival of

the first sample of the packet at a node, and the instant at which the

receiver detects the packet. Estimating packet detection delay is a

challenging task as it varies from packet to packet, and depends on

the SNR, as well as the multipath characteristics of the channel.

SourceSync exploits a fundamental property of FFTs; a delay in

the time domain manifests itself as a phase shift in the frequency

domain [29]. To understand how we can leverage this property, let

us look at the channel of an OFDM packet whose arrival the receiver

detected at a few samples away from the first sample. For clarity, we

discuss the case of a flat fading channel. The channel is a complex

number, and we will focus on the phase of the channel in each OFDM

subcarrier since that is the quantity affected by shifts in time. The

dotted curve in Fig. 5 shows the receiver channel phases per subcarrier.

As can be seen from the figure, the phases increase by a fixed slope.

If we artificially induce an additional delay offset and process the



packet as if it were detected ∆ samples after its actual detection time,

the dotted slope of the graph changes to the solid slope as shown in

Fig. 5. Thus, a delay offset in packet detection has introduced a shift

in the phase of each OFDM subcarrier proportional to the index of

that subcarrier.

In fact, one can show as a direct consequence of the definition of

the FFT [29] that the change in phase of subcarrier i is 2πi∆

Ns
, where

Ns is the number of samples in a symbol. Hence, in the graph in

Fig. 5, the induced offset ∆ introduces an additional slope of 3

ζ =
2π∆

Ns
(1)

Now, what would the phase slope be if the receiver detects the

packet exactly at the first sample? In the case of a flat fading channel

(i.e. coherence bandwidth larger than channel bandwidth), the differ-

ent OFDM subcarriers will experience similar channels. Hence, the

phase of the subcarriers at different channels will be constant, and

the slope will be zero. On the other hand, if the coherence bandwidth

is very small, then the different OFDM subcarriers will experience

uncorrelated channels. Since the phases of these channels are equally

likely to be positive or negative, the slope will be close to zero in this

case too. So, how about the intermediate case where the coherence

bandwidth is neither too large nor too small? We can treat this case

similar to the flat fading case by computing the slope over a small

window of consecutive subcarriers that spans a width smaller than the

coherence bandwidth, and averaging over several such windows. In

fact, we do not need to differentiate between the cases; the solution

proposed for intermediate channels works for the other cases too.

Hence, in SourceSync, we compute the slope over windows of con-

secutive OFDM subcarriers that span 3 MHz, which is less than the

coherence bandwidth of indoor channels [12], and average multiple

such windows to estimate the overall slope. Since the slope should be

zero in the absence of detection delay, we can substitute the average

slope as ζ in Eq. 1, and compute the detection delay offset, ∆.

(b) Hardware Turnaround Delay: The turnaround delay is the time

required for a co-sender to switch from reception of the lead sender’s

transmission to transmission of its concurrent signal. This time is

dependent both on the speed of the baseband pipeline and the switch-

ing time of the radio frontend from reception to transmission. The

turnaround time is constant for a particular node and can be measured

by locally counting the hardware clock ticks from detection of the

lead sender’s packet to the beginning of the co-sender’s transmission.

(c) Propagation Delay: This is the time of flight of the signal be-

tween the nodes. Given a transmitter-receiver pair, one can easily

obtain an estimate of the total round trip delay between the nodes by

having the sender send a probe and count the number of hardware

clock cycles till it gets a response from the receiver. The round trip

time elapsed between the transmission of the probe and the processing

of the response has multiple components as follows:4

3Note that the contribution of detection offset to channel slope is different from
carrier frequency offset (CFO) and sampling offset (SFO) estimation. Specifically, the
contribution of detection offset to slope is constant across symbols, unlike CFO which
does not change the slope, but only shifts the intercept of the line in Fig. 5 from symbol to
symbol, and SFO which creates a relative slope between two consecutive symbols [15].

4Eq. 2 assumes that the hardware turnaround delay at the transmitter is less than the
sum of propagation delays and hardware turnaround delay at the receiver. Note that we
can always ensure that this condition holds by adding a constant wait time at the receiver,
whose value is known to the transmitter. We drop this detail from the equation for clarity.

DelayProbe→Response = Probe Propagation Delay from Tx to Rx

+ Probe Packet Detection Delay at Rx

+ Hardware Turnaround Time at Rx

+ Response Propagation Delay from Rx to Tx

+ Response Packet Detection Delay at Tx (2)

Both sender and receiver can estimate their packet detection de-

lays for the probe and response packets, as well as their hardware

turnaround delays as described above. The receiver includes its delay

values in the response packet. The transmitter knows the total round

trip delay and its own packet detection delay, and can substitute these

delays, as well as the delays in the receiver response packet in Eq. 2

to obtain the two-way propagation delays. The one-way propagation

delay is computed as half the two-way propagation delay.

4.3 Compensating for Different Delays

SourceSync uses its measured delays to estimate how long co-senders

must wait to ensure that their transmissions arrive synchronized with

the lead sender’s transmission at the receiver. At a high level, the lead

sender initiates transmission by sending a synchronization header.

The co-senders hear the synchronization header, switch from recep-

tion to transmission, and then begin transmitting their data.

Let di be the one-way propagation delay from the lead sender to

co-sender i , hi the hardware turnaround delay of co-sender i , and

∆i the detection delay for the synchronization header at co-sender

i . Co-sender i will not be ready to transmit until after a delay of

di+∆i+hi . Hence, the lead sender cannot transmit data immediately

after the synchronization header, but has to wait for all co-senders

to be ready for data transmission. What is the least time necessary

to ensure that all co-senders are ready? The 802.11 specification

requires that a node should be able to transmit a response within a

SIFS after another node transmits a packet to it [37, 11, 27]. Hence,

it is sufficient that the lead sender waits for a SIFS (10 µs in 802.11

g/n) after the synchronization header. We will refer to this time, when

all co-senders are ready to transmit, as the global time reference.

Since co-sender i is ready to transmit di +∆i + hi units after the

synchronization header, it therefore needs to wait an additional time

of SIFS−(di +∆i +hi ) to align itself with the global time reference.

Co-senders however should not begin transmission exactly at the

global time reference, since different senders have different propa-

gation delays to the receiver. Specifically, if the co-sender is further

away from the receiver than the lead sender, it needs to transmit

earlier than the global time reference, and if it is closer to the receiver,

it needs to transmit after the global time reference. Exactly how

much before or after depends on the one-way propagation delays. Let

T0 be the one-way delay from the lead sender to the receiver, and

let ti be the one-way delay from co-sender i to the receiver. Then,

co-sender i simply waits for a time of wi = T0− ti relative to the

global time reference to determine when it should transmit.

The above algorithm requires the co-senders to know the propaga-

tion delay from the lead sender to themselves, and the propagation

delay from themselves and the lead sender to the receiver. SourceSync

computes these delays by having nodes exchange periodic probes.

The packet detection delay and hardware turnaround delays are both

computed and compensated for locally at co-senders.

4.4 SourceSync’s Synchronization Protocol

We now describe SourceSync’s synchronization protocol, assuming

that all co-senders have computed their wait times. For clarity, we fo-



����

�������	��A

BCD�

EF�	�

����

�A��D���� �����������D�

�����������

����D�����D�

(a) Transmission by lead sender for the joint frame.
���������	A

�A

�B�CD���EF��E��	������	

���C���E��

���������	A

�������A��A�DA�
�E���A

����
�D���	

 ���

!	�B��

(b) Transmission by co-sender for the joint frame.

Figure 6: Joint frame from the perspective of the senders. Sym-

bols in solid blue are transmitted by the lead sender, symbols in dotted

red by the co-sender, and symbols in white reflect silence periods.

The co-sender hears the lead sender’s transmission after a delay of d1,

waits for SIFS−(d1+∆1+h1) after processing the synchronization

header, followed by a wait of w1, and then begins its transmission.

�������

������	AB

C��D
E�BD�F
���B��
����

E��E

���

�A�E�BD�F

���B��

����

�A��	B�D�

�����E���A��

E
�
B
��
�
��
�

�
�
��
��
�

Figure 7: Format of joint frame seen by the receiver.

cus on two concurrent senders. The extension to multiple concurrent

senders is straightforward.

The lead sender triggers the joint transmission by transmitting a

synchronization header. The header contains a standard preamble

for packet detection and channel estimation, followed by the lead

sender identifier, a flag indicating that this is a joint frame, and a

packet identifier (16-bit hash of the IP source address, IP destination

address, and the IP identifier). After transmitting the synchronization

header, the lead sender goes silent for a duration of SIFS to allow the

co-sender to switch from reception to transmission. The lead sender

stays silent for an additional duration of two symbols to allow the

co-sender to transmit its channel estimation symbols, and then begins

transmitting data. The co-sender, on its part, starts by listening on the

medium. Once it receives the synchronization header, it continues

listening till it has received the packet identifier and then switches

from reception to transmission mode. The co-sender then waits

for its wait time, w1, computed as above, and transmits its channel

estimation symbols, followed immediately by data. Figs. 6(a) and (b)

show the transmission timeline of the joint frame from the perspective

of the lead sender and co-sender respectively. As a result of this

procedure, the receiver sees a single joint frame as shown in Fig. 7.

Two points are worth noting.

• SourceSync extends directly to more than two senders. In this case,

after sending the synchronization header, the lead sender stays

silent for the duration of a SIFS to allow all co-senders to switch,

followed by two channel estimation symbols for each co-sender.

• The overhead of synchronization is low. In particular, it consists of

a SIFS for switching and wait time, and 2 symbols per co-sender

channel estimation. For example, in the case of 802.11 using 1460

byte packets, and 12 Mbps transmission rate, the overhead is 1.7%

for two concurrent senders, and 2.8% for five concurrent senders.

4.5 Delay Tracking and Mobility

The algorithm described so far ensures that senders can transmit

synchronized with each other. But what happens when nodes move?

It might seem that the changes in propagation delays resulting from

node mobility will necessitate constant probe-response exchanges

to recompute these delays, and maintain synchronization. However,

SourceSync can deal with mobility without additional probes. Instead,

�����������	
A�BC�

D�EC��

F�����

�

���D�EC��
F�����

������������

Figure 8: Synchronization at two receivers. One-way delays are

shown. No choice of wait time allows perfect alignment at both

receivers.

it simply uses data transmissions to continuously adjust wait times at

co-senders and keep transmitters synchronized.

Specifically, for each received joint frame, a SourceSync receiver

detects the start of the synchronization header, and computes the chan-

nels of the lead sender and the co-sender. It then measures the slopes

of both these channels, and translates the measured slopes to symbol

offsets using the technique described in §4.2. If the lead sender and

co-sender are perfectly synchronized, their symbol boundaries will

be aligned, and therefore their computed symbol offsets will also be

equal. Otherwise, the difference of the offsets corresponds exactly to

the misalignment between the senders. The receiver includes the mea-

sured misalignment in its ACK, and the co-sender uses this update to

appropriately change its wait time for the following transmission.

4.6 Synchronization at Multiple Receivers

So far, we have focused only on synchronization at a single receiver.

However, applications such as opportunistic routing would benefit

from synchronization at multiple receivers.

In contrast to synchronization at a single receiver, where an appro-

priate choice of wait times at co-senders can achieve perfect align-

ment at the receiver, propagation delays may prevent us from achiev-

ing perfect synchronization simultaneously at multiple receivers. Con-

sider the senders in Fig. 8 with one-way delays as shown. To synchro-

nize at Rx1, the co-sender has to start data transmission before the

lead sender. But to synchronize at Rx2, the co-sender has to start data

transmission after the lead sender. Thus, it is not always feasible to

synchronize senders simultaneously at multiple receivers. However,

one can still leverage sender diversity gains from joint transmissions

by increasing the CP to account for the residual misalignment. The

objective of SourceSync in this case is to pick wait times at co-senders

so as to minimize the maximum misalignment at all receivers.

SourceSync formulates this problem as a linear program that es-

timates the optimal wait time, wi , for co-sender i . Define tij as the

one-way delay from co-sender i to receiver j , and Tj as the one-way

delay from the lead sender to receiver j . These values are estimated as

in the single-receiver case described in §4.2. The pair-wise misalign-

ment at receiver k of co-sender i with the lead sender can be written

as |(wi + tik )−Tk |, and similarly the pair-wise misalignment with

another co-sender j can be written as |(wi + tik )− (wj + tjk )|. The

linear program then chooses the wi ’s so as to minimize the maximum

pair-wise misalignment across the lead sender and all co-senders.

This optimization is a linear program, and can be solved efficiently,

especially since the number of co-senders and receivers is usually

small, say, < 5. Note that to determine the potential receivers to

synchronize at, we use the ETX metric as described in §7.2.

The lead sender performs this optimization and computes the neces-

sary increase in CP as the maximum misalignment across all senders.

In order to ensure that all senders in a joint transmission are synchro-

nized throughout the joint frame, it communicates the new CP to

co-senders as a field in the synchronization header. Co-senders use

this increased CP for the concurrently transmitted data symbols.



5 Joint Channel Estimation

Now that senders are synchronized, the next step is to decode the joint

frame at each receiver.We focus on a single OFDM subcarrier since

OFDM subcarriers can be decoded independently. For simplicity of

exposition, we consider two concurrent senders for the rest of this

section. Our technique generalizes to multiple concurrent senders.

Say the two senders are already synchronized, and they both trans-

mit the same symbol xi in subcarrier i . After the FFT, the receiver

receives a symbol yi in subcarrier i , which is related to the transmit-

ted symbol xi as yi =Hixi +n , where Hi is the composite channel

experienced by xi and n is noise. If the receiver knows the composite

channel Hi , it can extract xi from its received signal as xi =
yi

Hi
.

The composite channel, however, is affected by two factors. The

first is the individual channels traversed by symbol xi from each of

the senders. The second factor is that each sender has a different

oscillator crystal. It is unlikely that different crystals have exactly

the same carrier frequency [24], and therefore, each sender has a

different frequency offset with respect to the receiver. Hence, the

composite channel can be written as:

Hi (t) =Hi,1e
j2π∆f1t +Hi,2e

j2π∆f2t

where Hi (t) is the composite channel in subcarrier i at time t , Hi,j

are the individual channels in subcarrier i from sender j , (j = 1,2),
and ∆fj is the frequency offset of sender j relative to the receiver.5

Since different senders have different frequency offsets, the two

components of the composite channel will keep rotating relative

to each other. SourceSync addresses this issue by leveraging the

observation that the frequency offset is relatively stable over long

periods of time. Therefore it can be computed at the same time as the

initial pair-wise propagation delay estimation and communicated to

each sender, which can then correct for the offset before transmitting

by multiplying its transmitted symbol at time t by e−j2π∆fi t .

Once the transmitter corrects the offset, the receiver can estimate

each sender’s channel by using the corresponding channel estimation

symbols in the joint frame. It can then add the individual channels to

estimate the combined channel.

However, this is not sufficient. One can never correct completely

for the frequency offset because, even if the estimate is relatively accu-

rate, a small residual error in frequency accumulates over time leading

to large phase errors and unrecoverable decoding errors throughout

the packet. This is why, even for a single sender-receiver pair, OFDM

decoders have to perform phase tracking to correct for residual errors

in frequency offset throughout the packet. SourceSync performs

phase tracking for the same reason. The difference, however, is that

it has to perform independent phase tracking for each of the senders.

To do so, we augment the traditional OFDM algorithm for phase

tracking. Specifically, OFDM allocates some subcarriers known as pi-

lots in every data symbol for phase tracking. The exact algorithm for

phase tracking is in [15], but the important point here is that the algo-

rithm is designed to correct the residual frequency offset from a single

sender. Hence, this algorithm cannot work as such for concurrent

senders, since each sender has a different residual frequency offset.

We address this issue by sharing the pilots between the concurrent

senders across symbols. This is feasible since senders are synchro-

nized and have a common understanding of symbol boundaries. For

example, the lead sender can use pilot subcarriers in odd symbols,

and the co-sender can use pilot subcarriers in even symbols. The

receiver now maintains two residual frequency offset estimates which

it applies to the individual channels of the corresponding senders

before summing them to compute the composite channel.

5The frequency offset is normalized in units of the subcarrier width.

6 Smart Combiner

As stated earlier, even when the senders correct for the frequency

offset, there is always a residual frequency error that, over time,

causes the channel from each sender to rotate relative to the other.

Further, the initial phase of the channel for the two senders at the

beginning of a joint frame is random. The consequence of these

two behaviors is that the signals from the concurrent senders can

combine constructively or destructively depending on the random

initial phase and the rotation of the two channels, and the senders

cannot know how the signals are going to combine a priori. Thus, if

the two senders naively send the same signal, some unlucky symbols

will observe a deeply faded channel due to destructive combining and

the receiver will be unable to decode those symbols.

Let us consider a scenario where the channels from the two senders

happen to cancel each other, i.e., Hi,1 =−Hi,2. In this case, if the

transmitters sent the same data symbol, xi , the receiver receives

Hi,1xi +Hi,2xi , which equals 0. Of course, one way to address the

problem would be for one transmitter to transmit xi and the other to

transmit −xi . This transformation would transform the destructive

composite channel to a channel where the two signals reinforce each

other at the receiver. But such a strategy does not always work; if the

channels were originally aligned with each other, sending xi and −xi
would result in a 0 signal at the receiver, transforming the constructive

channel into a destructive one! Since the transmitters cannot track

the individual channels and their phases ahead of transmission, they

need a coding strategy that will provide high throughput irrespective

of the relative orientations and magnitudes of the channels.

SourceSync addresses this issue by leveraging space time block

codes [39] that cleverly code data across symbols to eliminate deep

fades due to destructive combination of signals. Specifically, in the

case of two senders, SourceSync uses the Alamouti code [2], which

is known to provide the optimal throughput in such a scenario, and

has low encoding and decoding complexity. In the case of more than

two senders, SourceSync uses a quasi-orthogonal space-time block

code [16] that is a simple extension of the Alamouti coding scheme,

and retains its simplicity of encoding and decoding. Given a sequence

of data symbols, a SourceSync lead sender uses codeword 1 from

the replicated Alamouti codebook specified by [16], and co-sender

i uses the (i + 1)th codeword from this codebook. This sequence

of codewords also has the property that the receiver can decode the

received frame even if only a subset of intended senders participate

in the concurrent transmission. Note that a receiver can determine

whether an intended co-sender participates in a transmission based on

the presence of energy in the time slots corresponding to the channel

estimation symbols of that co-sender.

7 Using SourceSync to harness sender diversity

Now that we have described the components of SourceSync, we

explain how SourceSync can be used to harness sender diversity for

opportunistic routing and wireless LANs. As we do so, we also

explain how SourceSync integrates with the MAC for both scenarios.

7.1 Combining SourceSync with Last Hop Diversity

Consider a client that is in the neighborhood of multiple APs, but has

poor connectivity to them. Uplink receiver diversity schemes like

MRD, SOFT, and Link-Alike [25, 17, 44] exploit the fact that, while

a transmitted packet has low probability of being received correctly

by a specific AP, it is likely to be received by at least one AP, and

all such APs can combine received packets or bits over the wired



��� ���

������

	�ABCD� D�E

F���BCE������

���������� ����������C

D��

���B��C

���������

������A�����

��A����������

���

���������

Figure 9: SourceSync for the last hop. SourceSync can harness

sender diversity using concurrent transmissions from many APs.

network. SourceSync complements these schemes by enabling sender

diversity on the downlink, i.e., instead of a client receiving packets

from only one AP at a time, multiple neighboring APs can transmit

simultaneously to the client and increase downlink reliability.

SourceSync exploits last-hop diversity using the architecture

shown in Fig. 9. We leverage the high bandwidth of the wired net-

work connecting the access points. A SourceSync controller resides

on the wired network, and uses it to forward packets arriving from the

wired uplink to all the APs in a neighborhood. This enables multiple

APs to transmit the same data to a wireless client. Further, the APs

have a static ordering that decides which codeword of the space-time

block they will utilize for their transmission.

MAC and Association: When a client first joins the wireless net-

work, it associates with multiple, say K , APs in its neighborhood,

where K is a tunable parameter. One of these APs, say the one with

the best link to the client, is chosen as the lead AP for this client and

this information is disseminated to all other APs. All the APs esti-

mate the propagation delays to their associated client. Additionally,

the APs can offline estimate their hardware turnaround delays and

propagation delays to each other. Each AP then uses this information

to calculate its delay compensation, as described in §4.4.

The APs use a contention-based MAC similar to 802.11. The only

difference is that when there is a downlink packet destined to a client,

only the lead AP contends for the medium. Once the lead AP acquires

the medium, it transmits its synchronization header followed by the

data. Upon hearing the synchronization header, all other APs join the

transmission as described in §4.4.

Similarly to 802.11, a client acknowledges successful receptions.

Note that since the ACK is on the uplink, APs can use standard re-

ceiver diversity techniques like SOFT [44] or MRD [25] to increase

the reliability of ACK reception. Received ACKs are communicated

to the lead AP over the wired network. The lead AP initiates retrans-

missions when it does not receive an ACK, and these retransmissions

are joined by the other APs, similarly to the original transmission.

Rate Adaptation: The APs coordinate rate adaptation since all si-

multaneously transmitted packets must have the same set of data

symbols. Rate adaptation in SourceSync is controlled by the lead AP.

Specifically, the lead AP runs a standard rate adaptation algorithm

such as SampleRate, RRAA or SoftRate [3, 43, 41] which makes rate

decisions based on the feedback from the receiver (acknowledgment,

soft rate hint etc.). The lead AP then includes the chosen rate for the

packet in the synchronization header when it initiates transmission.

Other APs use this information to pick the right transmission rate.

Note that, since SourceSync can leverage power and diversity gains

across APs, the combined transmission across APs might be able to

use a rate that cannot be used by any individual transmissions.

�

���� ���	AB
CD� CD�

�EF�E��

���E�����

�

�D�CD�

�������FE���

���F�������F�
Figure 10: SourceSync with Opportunistic Routing. SourceSync

exploits the fact that many relays hear a packet to improve throughput.

7.2 Combining SourceSync with Opportunistic Routing

In this section, we show how to extend opportunistic routing, partic-

ularly ExOR [4], to exploit sender diversity. Opportunistic routing

has been proposed to deal with lossy links in wireless mesh networks.

Consider the example in Fig. 10. Since all links have a loss rate of

0.5, a traditional single-path routing protocol will require an average

of two transmissions to deliver a packet from the source to its nexthop

router. However, when a source broadcasts its packet, the probability

that at least one of these routers will receive it is 1− (0.5)3, and

hence the expected number of transmissions to deliver a packet is

reduced to 1.14. Opportunistic routing protocols exploit this property

to decrease loss rates and increase mesh throughput.

However, the same property means that, half the time, multiple

routers will receive the packet from the source. Further, the proba-

bility of such an event, i.e., multiple routers hearing the same packet

increases with the size and density of the network. Existing protocols

cannot exploit this property. In contrast, SourceSync can leverage

the fact that multiple routers in a mesh overhear the same packet to

have these routers transmit the packet simultaneously towards the

destination. This form of cooperative forwarding increases the effec-

tive transmission power, enabling the packet to make longer jumps

towards its destination. Additionally, since the channels from the

concurrent transmitters to a downstream node router are unlikely to

experience simultaneous deep fading, overall loss rate is reduced.

In the rest of this section, we will describe how to integrate

SourceSync with ExOR to provide an opportunistic routing pro-

tocol that exploits both sender diversity and receiver diversity. At a

high level, ExOR works as follows. Given the link loss probabilities,

ExOR computes the ETX metric [8] of each link, and then arranges

the nodes in decreasing order of ETX distance from the destination.

ExOR is designed for bulk transport. The source operates in batches,

and starts by broadcasting all packets in the batch. Any node that

overhears the packet can potentially forward it towards its destina-

tion. ExOR has a priority scheduler that ensures that each packet is

forwarded by the node closest to the destination that has the packet.

We refer the reader to [4] for the details of the scheduling algorithm.

MAC: SourceSync retains ExOR’s MAC and extends it to allow si-

multaneous transmission from multiple forwarders. Similar to ExOR,

the potential forwarders for a transmission are determined based on

ETX measurements, and included in the packet header of a trans-

mission. However, unlike ExOR, SourceSync ensures that when an

ExOR forwarder transmits a packet, other nearby forwarders who

happen to have overheard this packet join the transmission. This

is similar to how neighboring APs join the transmission of a lead

AP to provide lasthop diversity as described in §7.1. There is one

key difference, however. Unlike in the last-hop scenario where AP

transmissions need to be aligned at one receiver, in opportunistic



routing, transmissions from multiple forwarders need to be aligned

at multiple receivers. Hence, SourceSync uses the SLS described

in §4 to determine both the wait compensation at the forwarders,

and the minimum necessary increase in the CP to compensate for

misalignment between the receivers. This computation requires for-

warders to know the delay differences between various nodes in their

neighborhood, and the set of concurrent forwarders and potential

receivers for each transmission.

SourceSync computes the delay differences between nodes by

running periodic measurements, similar to existing loss rate mea-

surements by mesh routing protocols. SourceSync however does not

need to perform delay measurements between all node pairs. A node

needs to compute delay differences only to nodes that are potential

co-forwarders or potential nexthops. The size of this set dictates

the measurement overhead. So, in SourceSync, only nodes that are

connected by links with loss probability below a threshold perform

pairwise delay measurements. Further, SourceSync leverages data

packets from concurrent forwarders to keep updating its estimates of

delay differences as described in §4.5.

What happens when all forwarders do not hear a transmission?

It is likely that not all forwarders selected during the measurement

phase hear all of their intended transmissions. Exchanging infor-

mation for every packet about exactly which forwarders heard that

packet in order to determine the increase in CP, as well as the trans-

mission codeword and wait time to be used by each forwarder will

introduce high overhead. SourceSync eliminates the need for such

exchanges by leveraging the measurement phase to pick the required

wait time and additional CP assuming all forwarders hear a transmis-

sion, and also determines the ordering (and therefore codeword) of

the forwarders. After this assignment, whenever the lead forwarder

transmits, other forwarders hear the synchronization header, which

contains the additional CP and identifier of the packet to the transmit-

ted. If a node is in the set of co-forwarders and has the transmitted

packet, it joins the transmission using the appropriate wait-time com-

pensation. The node also knows exactly which codeword to use for

its transmission based on the precomputed ordering of co-forwarders.

For example, say the lead forwarder is node i , and the size of the

co-forwarder set is k . The lead forwarder then uses the first codeword,

node i −1 uses the second codeword, and so on. Of course, not all

nodes in the set of potential co-forwarders might hear the packet,

or the transmission of the lead forwarder. Note that this does not

affect the correctness of SourceSync; a receiver can still decode the

concurrent transmission, and garner the benefits of sender diversity

from co-forwarders that actually join the transmission.

8 Performance

We have implemented a prototype of SourceSync in FPGA using the

WiGLAN radio platform [10] and evaluated it in a wireless testbed.

(a) Hardware: The radio board of our transceiver platform connects

to the PC via the PCI bus, and acts like a regular network card. The

radio operates in the 802.11a spectrum, has a maximum operating

bandwidth of 128 MHz and a symbol time of 1 µs. We configure the

radio to use 20 MHz of bandwidth, which is the bandwidth of 802.11

channels. The FPGA is clocked at 128 MHz, and the implementation

supports standard 802.11 transmit and receive chains.

(b) Implemented Infrastructure: We implement the components

of SourceSync and an infrastructure to evaluate it for last-hop diver-

sity and opportunistic routing. Since symbol-level synchronization

requires fine-grained sample level timing, we implement SourceSync

in the FPGA, using a combination of Verilog and Simulink. In order

Figure 11: Testbed map. Node locations are highlighted.

to evaluate last-hop and opportunistic diversity, we also implement

the following additional components:

(a) SampleRate: We implement SampleRate in our driver, using

MadWifi as a reference. We modify SampleRate for SourceSync

last-hop diversity to perform rate adaptation only on the lead AP.

(b) ExOR: We use the reference ExOR code and implement a simpli-

fied version for our topology, including ETX measurement, forwarder

computation, and a priority scheduler.

We evaluate SourceSync in an indoor testbed. Fig. 11 shows the

node locations in the experimental environment, which exhibits high

diversity due to the presence of walls, metal cabinets, desks, and

various combinations of line-of-sight and non-line-of-sight configu-

rations. The exact evaluation methodology and topologies used for

each experiment are described below.

8.1 Symbol Level Synchronization

In this section, we show that SourceSync can provide tight sym-

bol level synchronization across nodes, and that without such tight

synchronization the system may suffer significant reduction in SNR.

8.1.1 SourceSync provides tight synchronization

First, we investigate whether SourceSync provides accurate symbol-

level synchronization across transmitters.

Method. In this experiment, we place a pair of SourceSync

nodes acting as lead sender and co-sender, and one node acting

as a SourceSync receiver at three randomly chosen locations in our

testbed. We synchronize the two transmitters at the receiver using

SourceSync, as described in §4.4 and §4.5. Next, we want to measure

the resulting synchronization error (i.e., the time difference between

transmitters’ symbol boundaries). Recall, however, that SourceSync

works by measuring synchronization errors and feeding them back

to the transmitters in the ACK so they can synchronize their next

transmissions, as explained in §4.5. Thus, to measure SourceSync’s

synchronization error, we need an algorithm that is more accurate

than SourceSync in measuring synchronization errors. How do we

find such an algorithm? And if such an accurate algorithm exists,

why don’t we use it in SourceSync?

We can obtain such a highly accurate algorithm if we incur very

large overhead. Specifically, instead of computing synchronization

errors using only a few symbols at the beginning of each packet, as

in SourceSync, we can replace all the data in the packet with known

symbols and use the full packet to compute synchronization errors. A

SourceSync packet starts with an initial header consisting of the lead

sender’s synchronization header followed by the co-sender’s chan-

nel estimation symbols, after which the two senders jointly transmit

their data. The regular SourceSync algorithm obtains an estimate



 0

 5

 10

 15

 20

 0  5  10  15  20  25

9
5

th
 p

e
rc

e
n

ti
le

 
 s

y
n

c
h

ro
n

iz
a

ti
o

n
 e

rr
o

r

SNR (dB)

Figure 12: 95th percentile synchronization error. SourceSync

ensures that the synchronization error is less than 20 ns across the

operational range of 802.11 SNRs.

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700  800

S
N

R
 (

d
B

)

CP (ns)

Baseline Synchronization
SourceSync

Figure 13: CP reduction with SourceSync. SourceSync enables

concurrent transmissions to achieve high SNR with a significantly

lower CP than an unsynchronized baseline that does not compensate

for delay differences.

of the synchronization error using only the lead sender’s synchro-

nization header and the co-sender’s channel estimation symbols, as

described in §4.4 and §4.5. The error estimation algorithm, on the

other hand, replaces the data in each packet with 200 repetitions of

the initial header (i.e., the lead sender’s synchronization header and

the co-sender channel estimation symbols). Since the synchroniza-

tion error does not change within a packet, the new algorithm can

obtain 200 estimates of the synchronization error for each estimate

of SourceSync. By taking the average of these 200 estimates, the

new algorithm dramatically reduces the estimation noise, and hence

obtains an almost error free estimate of synchronization error for

that packet. Such an algorithm is fine to evaluate the extent of syn-

chronization error, but its overhead precludes its use in a practical

system. For every set of locations, we transmit 2000 such packets and

measure the average SNR from the two transmitters, as well as the

transmitters’ synchronization errors using both SourceSync and the

new algorithm. We consider the new algorithm as the ground truth

and compute SourceSync’s synchronization errors with respect to the

new algorithm. We repeat the experiment with multiple randomly

chosen location triplets in our testbed.

Results. Fig. 12 shows the synchronization error between the

two transmitters when using SourceSync, as a function of the av-

erage SNR. The graph shows that SourceSync’s synchronization

algorithm is robust across a wide range of SNRs. Specifically, the

95th percentile of the synchronization error is less than 20 ns for the

operational range of 802.11 SNRs. Thus, SourceSync’s estimates can

be used to perform highly accurate symbol level synchronization.

 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60  70

|H
|2

Tap Index

Figure 14: Delay spread of a single sender. The OFDM channel in

the time domain has 15 significant taps, which corresponds to the CP

length required with synchronization.

8.1.2 The need for accurate synchronization

SourceSync’s compensates for delays at senders to synchronize sym-

bols at the receiver, and so that the multipath tolerance of the joint

transmission is as good as with a single transmitter. In this section,

we evaluate the consequences of loose vs. tight synchronization.

Method. We place two transmitters and the receiver in a random

line-of-sight configuration in our testbed. We label one transmitter

a lead sender, and the other a co-sender. Both transmitters have

identical hardware, and hence the same hardware turnaround delay.

The only difference in delays between the transmitters is due to

propagation. We compare two schemes: a baseline scheme where

the lead sender transmits a synchronization header, and the co-sender

joins the transmission without compensating for delay differences,

and SourceSync’s symbol level synchronization scheme where the

co-sender joins the transmission after an appropriate wait time as

described in §4.4. For both schemes, we calculate the average receiver

SNR of a joint transmission, and perform this calculation for various

values of the cyclic prefix (CP).

Results. Fig. 13 plots the SNR of the joint transmission as a

function of CP, for SourceSync, and for the baseline. We see that

SourceSync requires a far lower CP to achieve the peak SNR of

the combined transmission, in comparison with the baseline. In

particular, SourceSync requires only a CP of 117 ns (15 samples in

our system) to achieve an SNR within 95% of the maximum, whereas

the baseline requires a CP of 469 ns (60 samples in our system).

Two points are worth noting. First, even when the transmitters have

identical turnaround times, the baseline increases the required CP

by 352 ns (45 samples) over what is required by SourceSync. By

compensating for delay differences, SourceSync can operate with a

much smaller CP, thus significantly increasing the benefits of sender

diversity. Second, the baseline has no mechanism to identify the

required increase in CP. Without this knowledge, one may pick a

CP that is too small, in which case the communication system stops

working. To prevent this scenario from occurring, one cannot simply

set the CP to 469 ns since this value may not work for a different

set of senders and receivers. One has to pick a conservative CP that

works for any network, and hence incur a large overhead.

Finally, it might seem that SourceSync’s SNR decreases at a CP

lower than 15 samples due to residual synchronization error. However,

this is not the case. The SNR reduction is due to the multipath delays

in the channel. One can see this by looking at the time domain

representation of the channel from one of the transmitters. Fig. 14

shows the magnitude of the time domain channel as a function of

tap index. We see that the channel has around 15 significant taps.

Reducing the CP below 15 samples causes symbols to leak into each

other, and hence reduces the maximum achievable SNR of the system.



 0

 5

 10

 15

 20

High Medium Low

A
v
e

ra
g

e
 S

N
R

 (
d

B
)

SNR Regime

Single Sender
SourceSync

Figure 15: Power gains. SourceSync achieves a 2–3 dB gain over a

single sender across the range of SNRs.

8.2 Power and Diversity Gains

As explained earlier, allowing multiple senders to transmit simulta-

neously provides both power gains from the addition of the senders’

powers, and frequency diversity gains because it is unlikely that the

same frequency experiences a fade from all senders to the receiver. In

this section, we verify that SourceSync actually provides these gains.

Method. We place the receiver and two transmitters at various

random locations in our testbed. For each set of locations, we measure

the average SNR across subcarriers, as well as the SNR per subcarrier

when each sender transmits separately, and when the two senders

transmit in combination using SourceSync. We group the locations

into three categories based on the SNRs of the senders transmitting

separately: low (<6dB), medium (6–12dB), and high (>12dB).

Results. Fig. 15 plots the average SNR across subcarriers, both

for senders transmitting separately, and for joint transmission using

SourceSync. As we can see, SourceSync improves the average SNR

by 2–3 dB for all SNR ranges. The increase in SNR is due to the

addition of power from both senders to the receiver. In particular,

simultaneous transmission from two senders whose signals arrive at

the receiver with equal power results in an SNR increase of 3 dB.

To understand the gains further, we plot the SNR per subcarrier for

all three SNR ranges. We see from Figs. 16(a)-(c) that SourceSync not

only improves the average SNR, but has a flatter SNR profile than that

of either sender transmitting separately. This shows that SourceSync

is able to exploit sender diversity on a per-subcarrier basis. These

gains are due to SourceSync’s smart combiner (§6) that uses space

time block codes at a subcarrier granularity to enable signals from

multiple transmitters to combine constructively. The flatter SNR

profile is important in channels like 802.11, which exhibit frequency

selective fading and different SNRs across subcarriers. Since it is

unlikely that both senders will simultaneously experience a fade in

the same subcarrier, SourceSync has a flatter SNR curve. 802.11

convolutional codes can be affected by even a few bad subcarriers,

and hence, a flatter profile allows the system to achieve significantly

higher bitrates with SourceSync than without SourceSync.

8.3 Last Hop Diversity

We now examine the gains from using SourceSync in a last-hop

scenario to harness sender diversity gains.

Method. We place the two transmitters, acting as APs, and the

receiver, acting as a client, in random testbed locations. For each set

of positions, we compute the throughput with each AP acting alone,

as well as the throughput of the combined system with SourceSync,

using SampleRate [3] for rate adaptation. We repeat the experiment

with different sets of random locations.

Results. Fig. 17 shows the CDF of the throughputs obtained

for each set of positions using the best AP for the client in that

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

F
ra

c
ti
o

n
 o

f 
c
lie

n
ts

Throughput (Mbps)

Single Best AP
SourceSync

Figure 17: SourceSync at the last hop. The red dotted line is the

CDF of throughput using selective diversity (i.e. single best AP). The

blue solid line is the CDF of throughput using sender diversity across

both APs with SourceSync. The CDFs show that sender diversity

produces a median gain of 1.57× over selective diversity.

configuration, as well as the throughputs when leveraging diversity

across APs using SourceSync. As can be seen, SourceSync provides

benefits over selective diversity (i.e. using the single best AP) at all

client throughputs, with a median throughput gain of 1.57×.

8.4 Opportunistic Routing with SourceSync

We evaluate the gains of SourceSync with opportunistic routing.

Method. We create a five node topology as follows. We place two

nodes, acting as source and destination, at random locations in our

testbed. For each choice of source and destination, we place nodes

acting as relays in three other random locations between the source

and destination location. We measure pairwise loss rates between

the nodes, compute the ETX metric for each link, and evaluate three

schemes: (a) a single path routing scheme that picks the best relay

to route the packets from source to destination, (b) ExOR, which

opportunistically uses any of the three relays as forwarders, and

(c) a combination of ExOR and SourceSync which also exploits

sender diversity to forward from relays to the destination. Since rate

adaptation for opportunistic routing protocols is still an open area,

we configure the entire network to run at 6 Mbps, and at 12 Mbps,

and pick the configuration that provides the highest throughput. We

repeat the experiment for 20 different topologies at each rate.

Results. Figs. 18(a) and (b) show the CDF of the throughputs

with single-path routing, ExOR, and the combination of ExOR and

SourceSync. As would be expected, ExOR can harness gains from

receiver diversity from the source to the relays, and provide a median

throughput gain of 1.26–1.4× over single path routing. SourceSync

can provide additional gains of 1.35–1.45× over the receiver diver-

sity in ExOR by exploiting sender diversity from the relays to the

destination. Further, SourceSync and ExOR work in tandem and

provide a median throughput gain of 1.7–2× over single path routing.

9 Conclusion

This paper introduces SourceSync, a distributed wireless architecture

that exploits sender diversity and demonstrates its practicality via

implementation and testbed evaluation. It integrates sender diversity

with last-hop diversity and opportunistic routing, showing that this

synergy can significantly improve throughput.

We believe that SourceSync has wider implications for wireless

design than explored here. Techniques such as distributed beam-

forming [34] and lattice codes [28] promise significant throughput

improvements in theory. However, these techniques have hitherto not



 10

 12

 14

 16

 18

 20

-10 -5  0  5  10

S
N

R
 (

d
B

)

Frequency (Mhz)

 0

 2

 4

 6

 8

 10

 12

 14

 16

-10 -5  0  5  10

Frequency (Mhz)

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10

-10 -5  0  5  10

Frequency (Mhz)

Sender1
Sender2
SrcSync

(a) High SNR (b) Medium SNR (c) Low SNR

Figure 16: Frequency diversity gains. SourceSync improves the SNR in each sub-carrier and creates a flatter SNR profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

F
ra

c
ti
o

n
 o

f 
c
lie

n
ts

Throughput (Mbps)

Single path
ExOR

SourceSync
 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

F
ra

c
ti
o

n
 o

f 
c
lie

n
ts

Throughput (Mbps)

Single path
ExOR

SourceSync

(a) Bitrate of 6 Mbps (b) Bitrate of 12 Mbps

Figure 18: SourceSync with opportunistic routing. SourceSync together with ExOR provides gains both over ExOR alone, and over

traditional single path routing. The median gains are 1.26-1.4× over single path routing, and 1.35-1.45× over ExOR, depending on the bitrate.

been used in practice because they require some form of symbol syn-

chronization. The synchronization mechanisms in this paper provide

a first step toward practical implementations of these techniques.

Acknowledgments: We thank the reviewers, and our shepherd, Matt

Welsh, for their comments. This work is funded by DARPA IT-

MANET and an NSF award CNS-0831660.

References

[1] D. Agrawal, V. Tarokh, A. Naguib, and N. Seshadri. Space-time coded OFDM for high
data-rate wireless communication over wideband channels. In IEEE VTC, volume 3, 1998.

[2] S. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal

on selected areas in communications, 16(8):1451–1458, 1998.

[3] J. Bicket. Bit-rate selection in wireless networks. Master’s thesis, MIT, 2005.

[4] S. Biswas and R. Morris. Opportunistic routing in multi-hop wireless networks. In ACM

SIGCOMM, Philadelphia, PA, 2005.

[5] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading structure for randomness in
wireless opportunistic routing. In ACM SIGCOMM, Kyoto, Japan, 2007.

[6] W. Choi and J. G. Andrews. Downlink performance and capacity of distributed antenna systems
in a multicell environment. IEEE Trans. on Wireless Comms., 6(1):69–73, January 2007.

[7] Distributed Antenna Systems - No Re-
placement for Wireless Strategy. http://medicalconnectivity.com/2008/02/05/
distributed-antenna-systems-no-replacement-for-wireless-strategy/.

[8] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path metric for
multi-hop wireless routing. In ACM MobiCom, San Diego, California, September 2003.

[9] A. Dutta, D. Saha, D. Grunwald, and D. Sicker. SMACK: a SMart ACKnowledgment scheme
for broadcast messages in wireless networks. In ACM SIGCOMM, Barcelona, Spain, 2009.

[10] F. Edalat. Real-time Sub-carrier Adaptive Modulation and Coding in Wideband OFDM

Wireless Systems. PhD thesis, Massachusetts Institute of Technology, 2008.

[11] Local and metropolitan area networks–specific requirements part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11g, June 2003.

[12] A. Goldsmith. Wireless Communications. Cambridge University Press, 2005.

[13] S. Gollakota and D. Katabi. ZigZag Decoding: Combating Hidden Terminals in Wireless
Networks. In ACM SIGCOMM, Seattle, WA, 2008.

[14] D. Halperin, T. Anderson, and D. Wetherall. Taking the sting out of carrier sense: Interference
Cancellation for wireless LANs. In ACM Mobicom, San Francisco, CA, 2008.

[15] J. Heiskala and J. Terry. OFDM Wireless LANs: A Theoretical and Practical Guide. Sams
Publishing, 2001.

[16] H. Jafarkhani. A quasi-orthogonal space-time block code. IEEE Trans. on Comms., 2001.

[17] S. Jakubczak, D. Andersen, M. Kaminsky, K. Papagiannaki, and S. Seshan. Link-alike: Using
Wireless to Share Network Resources in a Neighborhood. In MC2R, 2008.

[18] S. Katti, S. Gollakota, and D. Katabi. Embracing Wireless Interference: Analog Network
Coding. In ACM SIGCOMM, Kyoto, Japan, 2007.

[19] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbol-level Network Coding for
Wireless Mesh Networks. In ACM SIGCOMM, Seattle, WA, 2008.

[20] G. Kramer, I. Marić, and R. Yates. Cooperative communications. Found. in Networking, 1(3),
2006.

[21] J. N. Laneman, D. N. C. Tse, and G. W. Wornell. Cooperative diversity in wireless networks:
Efficient protocols and outage behavior. IEEE Trans. on Inform. Theory, Dec 2004.

[22] X. Li. Space-time coded multi-transmission among distributed transmitters without perfect
synchronization. Signal Processing Letters, IEEE, 11(12):948 – 951, Dec. 2004.

[23] J. Manweiler, N. Santhapuri, S. Sen, R. Roy Choudhury, S. Nelakuditi, and K. Munagala.
Order matters: transmission reordering in wireless networks. In ACM MobiCom, Beijing, 2009.

[24] H. Meyr, M. Moeneclaey, and S. A. Fechtel. Digital Communication Receivers:

Synchronization, Channel Estimation, and Signal Processing. John Wiley, 1998.

[25] A. Miu, H. Balakrishnan, and C. E. Koksal. Improving loss resilience with multi-radio diversity
in wireless networks. In ACM MobiCom, Cologne, Germany, 2005.

[26] A. K. L. Miu, G. Tan, H. Balakrishnan, and J. G. Apostolopoulos. Divert: Fine-grained path
selection for wireless lans. In ACM MobiSys, Boston, MA, 2004.

[27] Local and metropolitan area networks–specific requirements part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11n, Oct. 2009.

[28] B. Nazer and M. Gastpar. The case for structured random codes in network capacity theorems.
European Transactions on Telecommunications, 19(4):455–474, 2008.

[29] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. Signals & systems. Prentice-Hall, 1996.

[30] H. Rahul, F. Edalat, D. Katabi, and C. Sodini. Frequency-Aware Rate Adaptation and MAC
Protocols. In ACM MobiCom, Beijing, China, September 2009.

[31] E. Rozner, J. Seshadri, Y. Mehta, and L. Qiu. SOAR: Simple Opportunistic Adaptive Routing
Protocol for Wireless Mesh Networks. In IEEE TMC , 2009.

[32] A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity. Part I. System
description. IEEE Trans. on Comms., 51(11):1927–1938, 2003.

[33] A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity. Part II. Implementation
aspects and performance analysis. IEEE Trans. on Comms., 51(11):1939–1948, Nov. 2003.

[34] S. Shamai, O. Somekh, and B. M. Zaidel. Multi-cell communications: An information theoretic
perspective. In Workshop on Communications and coding, 2004.

[35] O. Shin, A. Chan, H. Kung, V. Tarokh, et al. Design of an OFDM cooperative space-time
diversity system. IEEE Transactions on Vehicular Technology, 56(4):2203, 2007.

[36] Further advancements for E-UTRA: Physical layer aspects, rel. 9, June 2009. Tech
Specification Group Radio Access Network.

[37] Local and metropolitan area networks–specific requirements part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11a, June 2003.

[38] Local and metropolitan area networks, part 16: Air interface for fixed broadband wireless
access systems: Amendment 1: Multihop relay specification, May 2009. IEEE.

[39] V. Tarokh, N. Seshadri, and A. Calderbank. Space-time codes for high data rate wireless
communication: Performance criterion and code construction. IEEE Trans. on Inform. Theory,
44(2), 1998.

[40] S. Verdu. Multiuser Detection. Cambridge University, 1998.

[41] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-Layer Wireless Bit Rate Adaptation. In
ACM SIGCOMM, Barcelona, Spain, August 2009.

[42] C. Williams, S. McLaughlin, and M. Beach. Robust OFDM timing synchronisation in
multipath channels. EURASIP Jrnl on Wireless Comm. and Networking, 2008:7, 2008.

[43] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust rate adaptation for 802.11 wireless
networks. In ACM MobiCom, Los Angeles, CA, 2006.

[44] G. Woo, P. Kheradpour, and D. Katabi. Beyond the bits: Cooperative packet recovery using
PHY information. In ACM MobiCom, Montreal, QC, 2007.

[45] J. Zhang, J. Jia, Q. Zhang, and E. M. K. Lo. Implementation and Evaluation of Cooperative
Communications in Software-Defined Radio Testbed. In INFOCOM, San Diego, CA, 2010.

http://medicalconnectivity.com/2008/02/05/distributed-antenna-systems-no-replacement-for-wireless-strategy/
http://medicalconnectivity.com/2008/02/05/distributed-antenna-systems-no-replacement-for-wireless-strategy/

	Introduction
	Combining Sender Diversity with Opportunistic Routing
	Combining Sender Diversity with Last-hop Receiver Diversity
	Results
	Contributions

	Related Work
	SourceSync Overview
	Symbol Level Synchronization
	Why do we synchronize transmitters?
	Delay Measurements for Accurate Synchronization
	Compensating for Different Delays
	SourceSync's Synchronization Protocol
	Delay Tracking and Mobility
	Synchronization at Multiple Receivers

	Joint Channel Estimation
	Smart Combiner
	Using SourceSync to harness sender diversity
	Combining SourceSync with Last Hop Diversity
	Combining SourceSync with Opportunistic Routing

	Performance
	Symbol Level Synchronization
	SourceSync provides tight synchronization
	The need for accurate synchronization

	Power and Diversity Gains
	Last Hop Diversity
	Opportunistic Routing with SourceSync

	Conclusion

